YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Internal Waves and Mixing in the Marginal Ice Zone near the Yermak Plateau

    Source: Journal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 007::page 1613
    Author:
    Fer, Ilker
    ,
    Skogseth, Ragnheid
    ,
    Geyer, Florian
    DOI: 10.1175/2010JPO4371.1
    Publisher: American Meteorological Society
    Abstract: Observations were made of oceanic currents, hydrography, and microstructure in the southern Yermak Plateau in summer 2007. The location is in the marginal ice zone at the Arctic Front northwest of Svalbard, where the West Spitsbergen Current (WSC) carries the warm Atlantic Water into the Arctic Ocean. Time series of approximately 1-day duration from five stations (upper 520 m) and of an 8-day duration from a mooring are analyzed to describe the characteristics of internal waves and turbulent mixing. The spectral composition of the internal-wave field over the southern Yermak Plateau is 0.1?0.3 times the midlatitude levels and compares with the most energetic levels in the central Arctic. Dissipation rate and eddy diffusivity below the pycnocline increase from the noise level on the cold side of the front by one order of magnitude on the warm side, where 100-m-thick layers with average diffusivities of 5 ? 10?5 m2 s?1 lead to heat loss from the Atlantic Water of 2?4 W m?2. Dissipation in the upper 150 m is well above the noise level at all stations, but strong stratification at the cold side of the front prohibits mixing across the pycnocline. Close to the shelf, at the core of the Svalbard branch of the WSC, diffusivity increases by another factor of 3?6. Here, near-bottom mixing removes 15 W m?2 of heat from the Atlantic layer. Internal-wave activity and mixing show variability related to topography and hydrography; thus, the path of the WSC will affect the cooling and freshening of the Atlantic inflow. When generalized to the Arctic Ocean, diapycnal mixing away from abyssal plains can be significant for the heat budget. Around the Yermak Plateau, it is of sufficient magnitude to influence heat anomaly pulses entering the Arctic Ocean; however, diapycnal mixing alone is unlikely to be significant for regional cooling of the WSC.
    • Download: (1.649Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Internal Waves and Mixing in the Marginal Ice Zone near the Yermak Plateau

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212785
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFer, Ilker
    contributor authorSkogseth, Ragnheid
    contributor authorGeyer, Florian
    date accessioned2017-06-09T16:36:51Z
    date available2017-06-09T16:36:51Z
    date copyright2010/07/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-70948.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212785
    description abstractObservations were made of oceanic currents, hydrography, and microstructure in the southern Yermak Plateau in summer 2007. The location is in the marginal ice zone at the Arctic Front northwest of Svalbard, where the West Spitsbergen Current (WSC) carries the warm Atlantic Water into the Arctic Ocean. Time series of approximately 1-day duration from five stations (upper 520 m) and of an 8-day duration from a mooring are analyzed to describe the characteristics of internal waves and turbulent mixing. The spectral composition of the internal-wave field over the southern Yermak Plateau is 0.1?0.3 times the midlatitude levels and compares with the most energetic levels in the central Arctic. Dissipation rate and eddy diffusivity below the pycnocline increase from the noise level on the cold side of the front by one order of magnitude on the warm side, where 100-m-thick layers with average diffusivities of 5 ? 10?5 m2 s?1 lead to heat loss from the Atlantic Water of 2?4 W m?2. Dissipation in the upper 150 m is well above the noise level at all stations, but strong stratification at the cold side of the front prohibits mixing across the pycnocline. Close to the shelf, at the core of the Svalbard branch of the WSC, diffusivity increases by another factor of 3?6. Here, near-bottom mixing removes 15 W m?2 of heat from the Atlantic layer. Internal-wave activity and mixing show variability related to topography and hydrography; thus, the path of the WSC will affect the cooling and freshening of the Atlantic inflow. When generalized to the Arctic Ocean, diapycnal mixing away from abyssal plains can be significant for the heat budget. Around the Yermak Plateau, it is of sufficient magnitude to influence heat anomaly pulses entering the Arctic Ocean; however, diapycnal mixing alone is unlikely to be significant for regional cooling of the WSC.
    publisherAmerican Meteorological Society
    titleInternal Waves and Mixing in the Marginal Ice Zone near the Yermak Plateau
    typeJournal Paper
    journal volume40
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4371.1
    journal fristpage1613
    journal lastpage1630
    treeJournal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian