YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Buoyancy and Wind-Driven Convection at Mixed Layer Density Fronts

    Source: Journal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 006::page 1222
    Author:
    Taylor, John R.
    ,
    Ferrari, Raffaele
    DOI: 10.1175/2010JPO4365.1
    Publisher: American Meteorological Society
    Abstract: In this study, the influence of a geostrophically balanced horizontal density gradient on turbulent convection in the ocean is examined using numerical simulations and a theoretical scaling analysis. Starting with uniform horizontal and vertical buoyancy gradients, convection is driven by imposing a heat loss or a destabilizing wind stress at the upper boundary, and a turbulent layer soon develops. For weak lateral fronts, turbulent convection results in a nearly homogeneous mixed layer (ML) whose depth grows in time. For strong fronts, a turbulent layer develops, but this layer is not an ML in the traditional sense because it is characterized by persistent horizontal and vertical gradients in density. The turbulent layer is, however, nearly homogeneous in potential vorticity (PV), with a value near zero. Using the PV budget, a scaling for the depth of the turbulent low PV layer and its time dependence is derived that compares well with numerical simulations. Two dynamical regimes are identified. In a convective layer near the surface, turbulence is generated by the buoyancy loss at the surface; below this layer, turbulence is generated by a symmetric instability of the lateral density gradient. This work extends classical scalings for the depth of turbulent boundary layers to account for the ubiquitous presence of lateral density gradients in the ocean. The new results indicate that a lateral density gradient, in addition to the surface forcing, can affect the stratification and the rate of growth of the surface boundary layer.
    • Download: (2.779Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Buoyancy and Wind-Driven Convection at Mixed Layer Density Fronts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212782
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorTaylor, John R.
    contributor authorFerrari, Raffaele
    date accessioned2017-06-09T16:36:51Z
    date available2017-06-09T16:36:51Z
    date copyright2010/06/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-70945.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212782
    description abstractIn this study, the influence of a geostrophically balanced horizontal density gradient on turbulent convection in the ocean is examined using numerical simulations and a theoretical scaling analysis. Starting with uniform horizontal and vertical buoyancy gradients, convection is driven by imposing a heat loss or a destabilizing wind stress at the upper boundary, and a turbulent layer soon develops. For weak lateral fronts, turbulent convection results in a nearly homogeneous mixed layer (ML) whose depth grows in time. For strong fronts, a turbulent layer develops, but this layer is not an ML in the traditional sense because it is characterized by persistent horizontal and vertical gradients in density. The turbulent layer is, however, nearly homogeneous in potential vorticity (PV), with a value near zero. Using the PV budget, a scaling for the depth of the turbulent low PV layer and its time dependence is derived that compares well with numerical simulations. Two dynamical regimes are identified. In a convective layer near the surface, turbulence is generated by the buoyancy loss at the surface; below this layer, turbulence is generated by a symmetric instability of the lateral density gradient. This work extends classical scalings for the depth of turbulent boundary layers to account for the ubiquitous presence of lateral density gradients in the ocean. The new results indicate that a lateral density gradient, in addition to the surface forcing, can affect the stratification and the rate of growth of the surface boundary layer.
    publisherAmerican Meteorological Society
    titleBuoyancy and Wind-Driven Convection at Mixed Layer Density Fronts
    typeJournal Paper
    journal volume40
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4365.1
    journal fristpage1222
    journal lastpage1242
    treeJournal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian