YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Momentum Flux and Diffusion due to Whitecapping in Wave–Current Interactions

    Source: Journal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005::page 837
    Author:
    Restrepo, Juan M.
    ,
    Ramírez, Jorge M.
    ,
    McWilliams, James C.
    ,
    Banner, Michael
    DOI: 10.1175/2010JPO4298.1
    Publisher: American Meteorological Society
    Abstract: hitecapping affects the Reynolds stresses near the ocean surface. A model for the conservative dynamics of waves and currents is modified to include the averaged effect of multiple, short-lived, and random wave-breaking events on large spatiotemporal scales. In this study?s treatment, whitecapping is parameterized stochastically as an additive uncertainty in the fluid velocity. It is coupled to the Stokes drift as well as to the current velocity in the form of nonlinear momentum terms in the vortex force and the Bernoulli head. The effects of whitecapping on tracer dynamics, mass balances, and boundary conditions are also derived here. Whitecapping also modifies the dynamics and the size of the sea surface boundary layer. This study does not resolve the boundary layer, however, the authors appeal to traditional viscosity parameterizations to include these diffusive effects, modified for the context of wave?current interactions.The parameterized breaking velocity field is endowed with empirical rules that link their generation in space and time to properties and dynamics of wave groups. The energy convergence rate of wave groups is used as an indicator for the onset of wave breaking. A methodology is proposed for evaluating this criterion over an evolving random Gaussian model for the ocean surface. The expected spatiotemporal statistics of the breaking events are not imposed, but rather computed, and are found to agree with the general expectation of its Poisson character. The authors also compute, rather than impose, the shear stress associated with the breaking events and find it to agree with theoretical expectations.When the relative role played by waves and breaking events on currents is compared, this study finds that waves, via the vortex force, purely advect the vorticity of currents that are essentially only dependent on transverse coordinates. The authors show that currents will tend to get rougher in the direction of steady wind, when whitecapping is present. Breaking events can alter and even suppress the rate of advection in the vortex force. When comparing the rates of transport, the waves will tend to dominate the short term and the whitecapping of the long-term rate.
    • Download: (2.277Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Momentum Flux and Diffusion due to Whitecapping in Wave–Current Interactions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212737
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorRestrepo, Juan M.
    contributor authorRamírez, Jorge M.
    contributor authorMcWilliams, James C.
    contributor authorBanner, Michael
    date accessioned2017-06-09T16:36:41Z
    date available2017-06-09T16:36:41Z
    date copyright2011/05/01
    date issued2011
    identifier issn0022-3670
    identifier otherams-70904.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212737
    description abstracthitecapping affects the Reynolds stresses near the ocean surface. A model for the conservative dynamics of waves and currents is modified to include the averaged effect of multiple, short-lived, and random wave-breaking events on large spatiotemporal scales. In this study?s treatment, whitecapping is parameterized stochastically as an additive uncertainty in the fluid velocity. It is coupled to the Stokes drift as well as to the current velocity in the form of nonlinear momentum terms in the vortex force and the Bernoulli head. The effects of whitecapping on tracer dynamics, mass balances, and boundary conditions are also derived here. Whitecapping also modifies the dynamics and the size of the sea surface boundary layer. This study does not resolve the boundary layer, however, the authors appeal to traditional viscosity parameterizations to include these diffusive effects, modified for the context of wave?current interactions.The parameterized breaking velocity field is endowed with empirical rules that link their generation in space and time to properties and dynamics of wave groups. The energy convergence rate of wave groups is used as an indicator for the onset of wave breaking. A methodology is proposed for evaluating this criterion over an evolving random Gaussian model for the ocean surface. The expected spatiotemporal statistics of the breaking events are not imposed, but rather computed, and are found to agree with the general expectation of its Poisson character. The authors also compute, rather than impose, the shear stress associated with the breaking events and find it to agree with theoretical expectations.When the relative role played by waves and breaking events on currents is compared, this study finds that waves, via the vortex force, purely advect the vorticity of currents that are essentially only dependent on transverse coordinates. The authors show that currents will tend to get rougher in the direction of steady wind, when whitecapping is present. Breaking events can alter and even suppress the rate of advection in the vortex force. When comparing the rates of transport, the waves will tend to dominate the short term and the whitecapping of the long-term rate.
    publisherAmerican Meteorological Society
    titleMultiscale Momentum Flux and Diffusion due to Whitecapping in Wave–Current Interactions
    typeJournal Paper
    journal volume41
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4298.1
    journal fristpage837
    journal lastpage856
    treeJournal of Physical Oceanography:;2011:;Volume( 041 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian