YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Wind-Driven Circulation and Landfast Ice-Edge Processes during Polynya Events in Northern Baffin Bay

    Source: Journal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 006::page 1356
    Author:
    Dumont, Dany
    ,
    Gratton, Yves
    ,
    Arbetter, Todd E.
    DOI: 10.1175/2010JPO4292.1
    Publisher: American Meteorological Society
    Abstract: A high-resolution sea ice?ocean numerical model of the North Water polynya has been developed to study the wind-driven circulation during polynya events. An idealized three-layer stratified ocean is used to initialize the model to characterize the baroclinic response to realistic wind and ice conditions. The model general circulation pattern is mainly forced by an along-channel sea level gradient between the Arctic Ocean and Baffin Bay, which determines the magnitude of the southward Baffin Current, and by an across-channel sea level gradient in Baffin Bay, which drives the northward West Greenland Current (WGC). These two currents are found to be anticorrelated to each other in the Smith Sound area. During strong northerly wind events, occurring quite frequently in the winter?spring period in the polynya, nutrient-rich Baffin Bay waters transported by the WGC are forced toward the Greenland shelf, coinciding with upwelling events along the Greenland coast. Whenever an ice bridge is present (i.e., the polynya exists and is substantially open), upwelling also occurs at the landfast ice edge. In such cases, the total upwelling area is increased by an amount that depends on the form of the ice bridge but could easily double during certain years. The baroclinic circulation associated with the upwelling response includes the formation of a cyclonic eddy attached to the ice edge that is generated during strong northerly wind events. Primary production estimations reveal that upwelling during polynya events plays a significant role in the early spring phytoplankton bloom, suggesting that the disappearance of the polynya as a result of climate change may have profound implications for the entire ecosystem.
    • Download: (2.712Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Wind-Driven Circulation and Landfast Ice-Edge Processes during Polynya Events in Northern Baffin Bay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212735
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorDumont, Dany
    contributor authorGratton, Yves
    contributor authorArbetter, Todd E.
    date accessioned2017-06-09T16:36:40Z
    date available2017-06-09T16:36:40Z
    date copyright2010/06/01
    date issued2010
    identifier issn0022-3670
    identifier otherams-70902.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212735
    description abstractA high-resolution sea ice?ocean numerical model of the North Water polynya has been developed to study the wind-driven circulation during polynya events. An idealized three-layer stratified ocean is used to initialize the model to characterize the baroclinic response to realistic wind and ice conditions. The model general circulation pattern is mainly forced by an along-channel sea level gradient between the Arctic Ocean and Baffin Bay, which determines the magnitude of the southward Baffin Current, and by an across-channel sea level gradient in Baffin Bay, which drives the northward West Greenland Current (WGC). These two currents are found to be anticorrelated to each other in the Smith Sound area. During strong northerly wind events, occurring quite frequently in the winter?spring period in the polynya, nutrient-rich Baffin Bay waters transported by the WGC are forced toward the Greenland shelf, coinciding with upwelling events along the Greenland coast. Whenever an ice bridge is present (i.e., the polynya exists and is substantially open), upwelling also occurs at the landfast ice edge. In such cases, the total upwelling area is increased by an amount that depends on the form of the ice bridge but could easily double during certain years. The baroclinic circulation associated with the upwelling response includes the formation of a cyclonic eddy attached to the ice edge that is generated during strong northerly wind events. Primary production estimations reveal that upwelling during polynya events plays a significant role in the early spring phytoplankton bloom, suggesting that the disappearance of the polynya as a result of climate change may have profound implications for the entire ecosystem.
    publisherAmerican Meteorological Society
    titleModeling Wind-Driven Circulation and Landfast Ice-Edge Processes during Polynya Events in Northern Baffin Bay
    typeJournal Paper
    journal volume40
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2010JPO4292.1
    journal fristpage1356
    journal lastpage1372
    treeJournal of Physical Oceanography:;2010:;Volume( 040 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian