YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales

    Source: Journal of Climate:;2010:;volume( 024 ):;issue: 003::page 881
    Author:
    Zwiers, Francis W.
    ,
    Zhang, Xuebin
    ,
    Feng, Yang
    DOI: 10.1175/2010JCLI3908.1
    Publisher: American Meteorological Society
    Abstract: Observed 1961?2000 annual extreme temperatures, namely annual maximum daily maximum (TXx) and minimum (TNx) temperatures and annual minimum daily maximum (TXn) and minimum (TNn) temperatures, are compared with those from climate simulations of multiple model ensembles with historical anthropogenic (ANT) forcing and with combined anthropogenic and natural external forcings (ALL) at both global and regional scales using a technique that allows changes in long return period extreme temperatures to be inferred. Generalized extreme value (GEV) distributions are fitted to the observed extreme temperatures using a time-evolving pattern of location parameters obtained from model-simulated extreme temperatures under ANT or ALL forcing. Evaluation of the parameters of the fitted GEV distributions shows that both ANT and ALL influence can be detected in TNx, TNn, TXn, and TXx at the global scale over the land areas for which there are observations, and also regionally over many large land areas, with detection in more regions in TNx. Therefore, it is concluded that the influence of anthropogenic forcing has had a detectable influence on extreme temperatures that have impacts on human society and natural systems at global and regional scales. External influence is estimated to have resulted in large changes in the likelihood of extreme annual maximum and minimum daily temperatures. Globally, waiting times for extreme annual minimum daily minimum and daily maximum temperature events that were expected to recur once every 20 yr in the 1960s are now estimated to exceed 35 and 30 yr, respectively. In contrast, waiting times for circa 1960s 20-yr extremes of annual maximum daily minimum and daily maximum temperatures are estimated to have decreased to fewer than 10 and 15 yr, respectively.
    • Download: (1.909Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212579
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZwiers, Francis W.
    contributor authorZhang, Xuebin
    contributor authorFeng, Yang
    date accessioned2017-06-09T16:36:13Z
    date available2017-06-09T16:36:13Z
    date copyright2011/02/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70762.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212579
    description abstractObserved 1961?2000 annual extreme temperatures, namely annual maximum daily maximum (TXx) and minimum (TNx) temperatures and annual minimum daily maximum (TXn) and minimum (TNn) temperatures, are compared with those from climate simulations of multiple model ensembles with historical anthropogenic (ANT) forcing and with combined anthropogenic and natural external forcings (ALL) at both global and regional scales using a technique that allows changes in long return period extreme temperatures to be inferred. Generalized extreme value (GEV) distributions are fitted to the observed extreme temperatures using a time-evolving pattern of location parameters obtained from model-simulated extreme temperatures under ANT or ALL forcing. Evaluation of the parameters of the fitted GEV distributions shows that both ANT and ALL influence can be detected in TNx, TNn, TXn, and TXx at the global scale over the land areas for which there are observations, and also regionally over many large land areas, with detection in more regions in TNx. Therefore, it is concluded that the influence of anthropogenic forcing has had a detectable influence on extreme temperatures that have impacts on human society and natural systems at global and regional scales. External influence is estimated to have resulted in large changes in the likelihood of extreme annual maximum and minimum daily temperatures. Globally, waiting times for extreme annual minimum daily minimum and daily maximum temperature events that were expected to recur once every 20 yr in the 1960s are now estimated to exceed 35 and 30 yr, respectively. In contrast, waiting times for circa 1960s 20-yr extremes of annual maximum daily minimum and daily maximum temperatures are estimated to have decreased to fewer than 10 and 15 yr, respectively.
    publisherAmerican Meteorological Society
    titleAnthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales
    typeJournal Paper
    journal volume24
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3908.1
    journal fristpage881
    journal lastpage892
    treeJournal of Climate:;2010:;volume( 024 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian