YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    How Much Should Climate Model Output Be Smoothed in Space?

    Source: Journal of Climate:;2010:;volume( 024 ):;issue: 003::page 867
    Author:
    Räisänen, Jouni
    ,
    Ylhäisi, Jussi S.
    DOI: 10.1175/2010JCLI3872.1
    Publisher: American Meteorological Society
    Abstract: The general decrease in the quality of climate model output with decreasing scale suggests a need for spatial smoothing to suppress the most unreliable small-scale features. However, even if correctly simulated, a large-scale average retained by the smoothing may not be representative of the local conditions, which are of primary interest in many impact studies. Here, the authors study this trade-off using simulations of temperature and precipitation by 24 climate models within the Third Coupled Model Intercomparison Project, to find the scale of smoothing at which the mean-square difference between smoothed model output and gridbox-scale reality is minimized. This is done for present-day time mean climate, recent temperature trends, and projections of future climate change, using cross validation between the models for the latter. The optimal scale depends strongly on the number of models used, being much smaller for multimodel means than for individual model simulations. It also depends on the variable considered and, in the case of climate change projections, the time horizon. For multimodel-mean climate change projections for the late twenty-first century, only very slight smoothing appears to be beneficial, and the resulting potential improvement is negligible for practical purposes. The use of smoothing as a means to improve the sampling for probabilistic climate change projections is also briefly explored.
    • Download: (1.277Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      How Much Should Climate Model Output Be Smoothed in Space?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212566
    Collections
    • Journal of Climate

    Show full item record

    contributor authorRäisänen, Jouni
    contributor authorYlhäisi, Jussi S.
    date accessioned2017-06-09T16:36:09Z
    date available2017-06-09T16:36:09Z
    date copyright2011/02/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70751.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212566
    description abstractThe general decrease in the quality of climate model output with decreasing scale suggests a need for spatial smoothing to suppress the most unreliable small-scale features. However, even if correctly simulated, a large-scale average retained by the smoothing may not be representative of the local conditions, which are of primary interest in many impact studies. Here, the authors study this trade-off using simulations of temperature and precipitation by 24 climate models within the Third Coupled Model Intercomparison Project, to find the scale of smoothing at which the mean-square difference between smoothed model output and gridbox-scale reality is minimized. This is done for present-day time mean climate, recent temperature trends, and projections of future climate change, using cross validation between the models for the latter. The optimal scale depends strongly on the number of models used, being much smaller for multimodel means than for individual model simulations. It also depends on the variable considered and, in the case of climate change projections, the time horizon. For multimodel-mean climate change projections for the late twenty-first century, only very slight smoothing appears to be beneficial, and the resulting potential improvement is negligible for practical purposes. The use of smoothing as a means to improve the sampling for probabilistic climate change projections is also briefly explored.
    publisherAmerican Meteorological Society
    titleHow Much Should Climate Model Output Be Smoothed in Space?
    typeJournal Paper
    journal volume24
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3872.1
    journal fristpage867
    journal lastpage880
    treeJournal of Climate:;2010:;volume( 024 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian