YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Projected Future Seasonal Changes in Tropical Summer Climate

    Source: Journal of Climate:;2010:;volume( 024 ):;issue: 002::page 473
    Author:
    Sobel, Adam H.
    ,
    Camargo, Suzana J.
    DOI: 10.1175/2010JCLI3748.1
    Publisher: American Meteorological Society
    Abstract: The authors analyze changes in the tropical sea surface temperature (SST), surface wind, and other fields from the twentieth to the twenty-first century in climate projections using the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble, focusing on the seasons January?March (JFM) and July?September (JAS). When the annual mean change is subtracted, the remaining ?seasonal changes? have robust, coherent structures. The JFM and JAS changes resemble each other very closely after either a change of sign or reflection about the equator. The seasonal changes include an increase in the summer hemisphere SST and a decrease in the winter hemisphere SST. These appear to be thermodynamic consequences of easterly trade winds strengthening in the winter subtropics and weakening in the summer subtropics. These in turn are associated with the weakening and expansion of the Hadley circulation, documented by previous studies, which themselves are likely consequences of changes in extratropical eddies. The seasonal SST changes influence the environment for deep convection: peak precipitation in the summer hemisphere increases by around 10% and convective available potential energy (CAPE) increases by as much as 25%. Comparable fractions of these changes are attributable to the annual mean change and the seasonal changes, though the two have very different spatial structures. Since the annual mean change is marked by relative warming in the Northern Hemisphere compared to the Southern Hemisphere, the seasonal changes oppose the annual mean change in JFM and enhance it in JAS.
    • Download: (2.455Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Projected Future Seasonal Changes in Tropical Summer Climate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212502
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSobel, Adam H.
    contributor authorCamargo, Suzana J.
    date accessioned2017-06-09T16:35:58Z
    date available2017-06-09T16:35:58Z
    date copyright2011/01/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70693.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212502
    description abstractThe authors analyze changes in the tropical sea surface temperature (SST), surface wind, and other fields from the twentieth to the twenty-first century in climate projections using the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel ensemble, focusing on the seasons January?March (JFM) and July?September (JAS). When the annual mean change is subtracted, the remaining ?seasonal changes? have robust, coherent structures. The JFM and JAS changes resemble each other very closely after either a change of sign or reflection about the equator. The seasonal changes include an increase in the summer hemisphere SST and a decrease in the winter hemisphere SST. These appear to be thermodynamic consequences of easterly trade winds strengthening in the winter subtropics and weakening in the summer subtropics. These in turn are associated with the weakening and expansion of the Hadley circulation, documented by previous studies, which themselves are likely consequences of changes in extratropical eddies. The seasonal SST changes influence the environment for deep convection: peak precipitation in the summer hemisphere increases by around 10% and convective available potential energy (CAPE) increases by as much as 25%. Comparable fractions of these changes are attributable to the annual mean change and the seasonal changes, though the two have very different spatial structures. Since the annual mean change is marked by relative warming in the Northern Hemisphere compared to the Southern Hemisphere, the seasonal changes oppose the annual mean change in JFM and enhance it in JAS.
    publisherAmerican Meteorological Society
    titleProjected Future Seasonal Changes in Tropical Summer Climate
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3748.1
    journal fristpage473
    journal lastpage487
    treeJournal of Climate:;2010:;volume( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian