Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past CenturySource: Journal of Climate:;2010:;volume( 023 ):;issue: 020::page 5517Author:Seager, Richard
,
Naik, Naomi
,
Baethgen, Walter
,
Robertson, Andrew
,
Kushnir, Yochanan
,
Nakamura, Jennifer
,
Jurburg, Stephanie
DOI: 10.1175/2010JCLI3578.1Publisher: American Meteorological Society
Abstract: Observations, atmosphere models forced by historical SSTs, and idealized simulations are used to determine the causes and mechanisms of interannual to multidecadal precipitation anomalies over southeast South America (SESA) since 1901. About 40% of SESA precipitation variability over this period can be accounted for by global SST forcing. Both the tropical Pacific and Atlantic Oceans share the driving of SESA precipitation, with the latter contributing the most on multidecadal time scales and explaining a wetting trend from the early midcentury until the end of the last century. Cold tropical Atlantic SST anomalies are shown to drive wet conditions in SESA. The dynamics that link SESA precipitation to tropical Atlantic SST anomalies are explored. Cold tropical Atlantic SST anomalies force equatorward-flowing upper-tropospheric flow to the southeast of the tropical heating anomaly, and the vorticity advection by this flow is balanced by vortex stretching and ascent, which drives the increased precipitation. The 1930s Pampas Dust Bowl drought occurred, via this mechanism, in response to warm tropical Atlantic SST anomalies. The atmospheric response to cold tropical Pacific SSTs also contributed. The tropical Atlantic SST anomalies linked to SESA precipitation are the tropical components of the Atlantic multidecadal oscillation. There is little evidence that the large trends over past decades are related to anthropogenic radiative forcing, although models project that this will cause a modest wetting of the climate of SESA. As such, and if the Atlantic multidecadal oscillation has shifted toward a warm phase, it should not be assumed that the long-term wetting trend in SESA will continue. Any reversal to a drier climate more typical of earlier decades would have clear consequences for regional agriculture and water resources.
|
Collections
Show full item record
| contributor author | Seager, Richard | |
| contributor author | Naik, Naomi | |
| contributor author | Baethgen, Walter | |
| contributor author | Robertson, Andrew | |
| contributor author | Kushnir, Yochanan | |
| contributor author | Nakamura, Jennifer | |
| contributor author | Jurburg, Stephanie | |
| date accessioned | 2017-06-09T16:35:37Z | |
| date available | 2017-06-09T16:35:37Z | |
| date copyright | 2010/10/01 | |
| date issued | 2010 | |
| identifier issn | 0894-8755 | |
| identifier other | ams-70581.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4212377 | |
| description abstract | Observations, atmosphere models forced by historical SSTs, and idealized simulations are used to determine the causes and mechanisms of interannual to multidecadal precipitation anomalies over southeast South America (SESA) since 1901. About 40% of SESA precipitation variability over this period can be accounted for by global SST forcing. Both the tropical Pacific and Atlantic Oceans share the driving of SESA precipitation, with the latter contributing the most on multidecadal time scales and explaining a wetting trend from the early midcentury until the end of the last century. Cold tropical Atlantic SST anomalies are shown to drive wet conditions in SESA. The dynamics that link SESA precipitation to tropical Atlantic SST anomalies are explored. Cold tropical Atlantic SST anomalies force equatorward-flowing upper-tropospheric flow to the southeast of the tropical heating anomaly, and the vorticity advection by this flow is balanced by vortex stretching and ascent, which drives the increased precipitation. The 1930s Pampas Dust Bowl drought occurred, via this mechanism, in response to warm tropical Atlantic SST anomalies. The atmospheric response to cold tropical Pacific SSTs also contributed. The tropical Atlantic SST anomalies linked to SESA precipitation are the tropical components of the Atlantic multidecadal oscillation. There is little evidence that the large trends over past decades are related to anthropogenic radiative forcing, although models project that this will cause a modest wetting of the climate of SESA. As such, and if the Atlantic multidecadal oscillation has shifted toward a warm phase, it should not be assumed that the long-term wetting trend in SESA will continue. Any reversal to a drier climate more typical of earlier decades would have clear consequences for regional agriculture and water resources. | |
| publisher | American Meteorological Society | |
| title | Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century | |
| type | Journal Paper | |
| journal volume | 23 | |
| journal issue | 20 | |
| journal title | Journal of Climate | |
| identifier doi | 10.1175/2010JCLI3578.1 | |
| journal fristpage | 5517 | |
| journal lastpage | 5539 | |
| tree | Journal of Climate:;2010:;volume( 023 ):;issue: 020 | |
| contenttype | Fulltext |