YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height

    Source: Journal of Climate:;2010:;volume( 023 ):;issue: 021::page 5790
    Author:
    Liu, Shuyan
    ,
    Liang, Xin-Zhong
    DOI: 10.1175/2010JCLI3552.1
    Publisher: American Meteorological Society
    Abstract: An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.
    • Download: (2.286Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212363
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLiu, Shuyan
    contributor authorLiang, Xin-Zhong
    date accessioned2017-06-09T16:35:32Z
    date available2017-06-09T16:35:32Z
    date copyright2010/11/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70568.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212363
    description abstractAn observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.
    publisherAmerican Meteorological Society
    titleObserved Diurnal Cycle Climatology of Planetary Boundary Layer Height
    typeJournal Paper
    journal volume23
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3552.1
    journal fristpage5790
    journal lastpage5809
    treeJournal of Climate:;2010:;volume( 023 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian