Decadal Shift in El Niño Influences on Indo–Western Pacific and East Asian Climate in the 1970sSource: Journal of Climate:;2010:;volume( 023 ):;issue: 012::page 3352Author:Xie, Shang-Ping
,
Du, Yan
,
Huang, Gang
,
Zheng, Xiao-Tong
,
Tokinaga, Hiroki
,
Hu, Kaiming
,
Liu, Qinyu
DOI: 10.1175/2010JCLI3429.1Publisher: American Meteorological Society
Abstract: El Niño?s influence on the subtropical northwest (NW) Pacific climate increased after the climate regime shift of the 1970s. This is manifested in well-organized atmospheric anomalies of suppressed convection and a surface anticyclone during the summer (June?August) of the El Niño decay year [JJA(1)], a season when equatorial Pacific sea surface temperature (SST) anomalies have dissipated. In situ observations and ocean?atmospheric reanalyses are used to investigate mechanisms for the interdecadal change. During JJA(1), the influence of the El Niño?Southern Oscillation (ENSO) on the NW Pacific is indirect, being mediated by SST conditions over the tropical Indian Ocean (TIO). The results here show that interdecadal change in this influence is due to changes in the TIO response to ENSO. During the postregime shift epoch, the El Niño teleconnection excites downwelling Rossby waves in the south TIO by anticyclonic wind curls. These Rossby waves propagate slowly westward, causing persistent SST warming over the thermocline ridge in the southwest TIO. The ocean warming induces an antisymmetric wind pattern across the equator, and the anomalous northeasterlies cause the north Indian Ocean to warm through JJA(1) by reducing the southwesterly monsoon winds. The TIO warming excites a warm Kelvin wave in tropospheric temperature, resulting in robust atmospheric anomalies over the NW Pacific that include the surface anticyclone. During the preregime shift epoch, ENSO is significantly weaker in variance and decays earlier than during the recent epoch. Compared to the epoch after the mid-1970s, SST and wind anomalies over the TIO are similar during the developing and mature phases of ENSO but are very weak during the decay phase. Specifically, the southern TIO Rossby waves are weaker, so are the antisymmetric wind pattern and the North Indian Ocean warming during JJA(1). Without the anchor in the TIO warming, atmospheric anomalies over the NW Pacific fail to develop during JJA(1) prior to the mid-1970s. The relationship of the interdecadal change to global warming and implications for the East Asian summer monsoon are discussed.
|
Collections
Show full item record
contributor author | Xie, Shang-Ping | |
contributor author | Du, Yan | |
contributor author | Huang, Gang | |
contributor author | Zheng, Xiao-Tong | |
contributor author | Tokinaga, Hiroki | |
contributor author | Hu, Kaiming | |
contributor author | Liu, Qinyu | |
date accessioned | 2017-06-09T16:35:16Z | |
date available | 2017-06-09T16:35:16Z | |
date copyright | 2010/06/01 | |
date issued | 2010 | |
identifier issn | 0894-8755 | |
identifier other | ams-70489.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4212275 | |
description abstract | El Niño?s influence on the subtropical northwest (NW) Pacific climate increased after the climate regime shift of the 1970s. This is manifested in well-organized atmospheric anomalies of suppressed convection and a surface anticyclone during the summer (June?August) of the El Niño decay year [JJA(1)], a season when equatorial Pacific sea surface temperature (SST) anomalies have dissipated. In situ observations and ocean?atmospheric reanalyses are used to investigate mechanisms for the interdecadal change. During JJA(1), the influence of the El Niño?Southern Oscillation (ENSO) on the NW Pacific is indirect, being mediated by SST conditions over the tropical Indian Ocean (TIO). The results here show that interdecadal change in this influence is due to changes in the TIO response to ENSO. During the postregime shift epoch, the El Niño teleconnection excites downwelling Rossby waves in the south TIO by anticyclonic wind curls. These Rossby waves propagate slowly westward, causing persistent SST warming over the thermocline ridge in the southwest TIO. The ocean warming induces an antisymmetric wind pattern across the equator, and the anomalous northeasterlies cause the north Indian Ocean to warm through JJA(1) by reducing the southwesterly monsoon winds. The TIO warming excites a warm Kelvin wave in tropospheric temperature, resulting in robust atmospheric anomalies over the NW Pacific that include the surface anticyclone. During the preregime shift epoch, ENSO is significantly weaker in variance and decays earlier than during the recent epoch. Compared to the epoch after the mid-1970s, SST and wind anomalies over the TIO are similar during the developing and mature phases of ENSO but are very weak during the decay phase. Specifically, the southern TIO Rossby waves are weaker, so are the antisymmetric wind pattern and the North Indian Ocean warming during JJA(1). Without the anchor in the TIO warming, atmospheric anomalies over the NW Pacific fail to develop during JJA(1) prior to the mid-1970s. The relationship of the interdecadal change to global warming and implications for the East Asian summer monsoon are discussed. | |
publisher | American Meteorological Society | |
title | Decadal Shift in El Niño Influences on Indo–Western Pacific and East Asian Climate in the 1970s | |
type | Journal Paper | |
journal volume | 23 | |
journal issue | 12 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/2010JCLI3429.1 | |
journal fristpage | 3352 | |
journal lastpage | 3368 | |
tree | Journal of Climate:;2010:;volume( 023 ):;issue: 012 | |
contenttype | Fulltext |