YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing the Impact of Meteorological History on Subtropical Cloud Fraction

    Source: Journal of Climate:;2010:;volume( 023 ):;issue: 011::page 2926
    Author:
    Mauger, Guillaume S.
    ,
    Norris, Joel R.
    DOI: 10.1175/2010JCLI3272.1
    Publisher: American Meteorological Society
    Abstract: This study presents findings from the application of a new Lagrangian method used to evaluate the meteorological sensitivities of subtropical clouds in the northeast Atlantic. Parcel back trajectories are used to account for the influence of previous meteorological conditions on cloud properties, whereas forward trajectories highlight the continued evolution of cloud state. Satellite retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth?s Radiant Energy System (CERES), Quick Scatterometer (QuikSCAT), and Special Sensor Microwave Imager (SSM/I) provide measurements of cloud properties as well as atmospheric state. These are complemented by meteorological fields from the ECMWF operational analysis model. Observations are composited by cloud fraction, and mean trajectories are used to evaluate differences between each composite. Systematic differences in meteorological conditions are found to extend through the full 144-h trajectories, confirming the need to account for cloud history in assessing impacts on cloud properties. Most striking among these is the observation that strong synoptic-scale divergence is associated with reduced cloud fraction 0?12 h later. Consistent with prior work, the authors find that cloud cover variations correlate best with variations in lower-tropospheric stability (LTS) and SST that are 36 h upwind. In addition, the authors find that free-tropospheric humidity, along-trajectory SST gradient, and surface fluxes all correlate best at lags ranging from 0 to 12 h. Overall, cloud cover appears to be most strongly impacted by variations in surface divergence over short time scales (<12 h) and by factors influencing boundary layer stratification over longer time scales (12?48 h). Notably, in the early part of the trajectories several of the above associations are reversed. In particular, when trajectories computed for small cloud fraction scenes are traced back 72 h, they are found to originate in conditions of weaker surface divergence and stronger surface fluxes relative to those computed for large cloud fraction scenes. Coupled with a drier boundary layer and warmer SSTs, this suggests that a decoupling of the boundary layer precedes cloud dissipation. The authors develop an approximation for the stratification of the boundary layer and find further evidence that stratification plays a role in differentiating between developing and dissipating clouds.
    • Download: (1.227Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing the Impact of Meteorological History on Subtropical Cloud Fraction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212195
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMauger, Guillaume S.
    contributor authorNorris, Joel R.
    date accessioned2017-06-09T16:34:58Z
    date available2017-06-09T16:34:58Z
    date copyright2010/06/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-70416.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212195
    description abstractThis study presents findings from the application of a new Lagrangian method used to evaluate the meteorological sensitivities of subtropical clouds in the northeast Atlantic. Parcel back trajectories are used to account for the influence of previous meteorological conditions on cloud properties, whereas forward trajectories highlight the continued evolution of cloud state. Satellite retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth?s Radiant Energy System (CERES), Quick Scatterometer (QuikSCAT), and Special Sensor Microwave Imager (SSM/I) provide measurements of cloud properties as well as atmospheric state. These are complemented by meteorological fields from the ECMWF operational analysis model. Observations are composited by cloud fraction, and mean trajectories are used to evaluate differences between each composite. Systematic differences in meteorological conditions are found to extend through the full 144-h trajectories, confirming the need to account for cloud history in assessing impacts on cloud properties. Most striking among these is the observation that strong synoptic-scale divergence is associated with reduced cloud fraction 0?12 h later. Consistent with prior work, the authors find that cloud cover variations correlate best with variations in lower-tropospheric stability (LTS) and SST that are 36 h upwind. In addition, the authors find that free-tropospheric humidity, along-trajectory SST gradient, and surface fluxes all correlate best at lags ranging from 0 to 12 h. Overall, cloud cover appears to be most strongly impacted by variations in surface divergence over short time scales (<12 h) and by factors influencing boundary layer stratification over longer time scales (12?48 h). Notably, in the early part of the trajectories several of the above associations are reversed. In particular, when trajectories computed for small cloud fraction scenes are traced back 72 h, they are found to originate in conditions of weaker surface divergence and stronger surface fluxes relative to those computed for large cloud fraction scenes. Coupled with a drier boundary layer and warmer SSTs, this suggests that a decoupling of the boundary layer precedes cloud dissipation. The authors develop an approximation for the stratification of the boundary layer and find further evidence that stratification plays a role in differentiating between developing and dissipating clouds.
    publisherAmerican Meteorological Society
    titleAssessing the Impact of Meteorological History on Subtropical Cloud Fraction
    typeJournal Paper
    journal volume23
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/2010JCLI3272.1
    journal fristpage2926
    journal lastpage2940
    treeJournal of Climate:;2010:;volume( 023 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian