YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport

    Source: Journal of the Atmospheric Sciences:;2010:;Volume( 068 ):;issue: 004::page 769
    Author:
    Levine, Xavier J.
    ,
    Schneider, Tapio
    DOI: 10.1175/2010JAS3553.1
    Publisher: American Meteorological Society
    Abstract: t is unclear how the width and strength of the Hadley circulation are controlled and how they respond to climate changes. Simulations of global warming scenarios with comprehensive climate models suggest the Hadley circulation may widen and weaken as the climate warms. But these changes are not quantitatively consistent among models, and how they come about is not understood. Here, a wide range of climates is simulated with an idealized moist general circulation model (GCM) coupled to a simple representation of ocean heat transport, in order to place past and possible future changes in the Hadley circulation into a broader context and to investigate the mechanisms responsible for them.By comparison of simulations with and without ocean heat transport, it is shown that it is essential to take low-latitude ocean heat transport and its coupling to wind stress into account to obtain Hadley circulations in a dynamical regime resembling Earth?s, particularly in climates resembling present-day Earth?s and colder. As the optical thickness of an idealized longwave absorber in the simulations is increased and the climate warms, the Hadley circulation strengthens in colder climates and weakens in warmer climates; it has maximum strength in a climate close to present-day Earth?s. In climates resembling present-day Earth?s and colder, the Hadley circulation strength is largely controlled by the divergence of angular momentum fluxes associated with eddies of midlatitude origin; the latter scale with the mean available potential energy in midlatitudes. The importance of these eddy momentum fluxes for the Hadley circulation strength gradually diminishes as the climate warms. The Hadley circulation generally widens as the climate warms, but at a modest rate that depends sensitively on how it is determined.
    • Download: (1.230Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4212074
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLevine, Xavier J.
    contributor authorSchneider, Tapio
    date accessioned2017-06-09T16:34:38Z
    date available2017-06-09T16:34:38Z
    date copyright2011/04/01
    date issued2010
    identifier issn0022-4928
    identifier otherams-70307.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4212074
    description abstractt is unclear how the width and strength of the Hadley circulation are controlled and how they respond to climate changes. Simulations of global warming scenarios with comprehensive climate models suggest the Hadley circulation may widen and weaken as the climate warms. But these changes are not quantitatively consistent among models, and how they come about is not understood. Here, a wide range of climates is simulated with an idealized moist general circulation model (GCM) coupled to a simple representation of ocean heat transport, in order to place past and possible future changes in the Hadley circulation into a broader context and to investigate the mechanisms responsible for them.By comparison of simulations with and without ocean heat transport, it is shown that it is essential to take low-latitude ocean heat transport and its coupling to wind stress into account to obtain Hadley circulations in a dynamical regime resembling Earth?s, particularly in climates resembling present-day Earth?s and colder. As the optical thickness of an idealized longwave absorber in the simulations is increased and the climate warms, the Hadley circulation strengthens in colder climates and weakens in warmer climates; it has maximum strength in a climate close to present-day Earth?s. In climates resembling present-day Earth?s and colder, the Hadley circulation strength is largely controlled by the divergence of angular momentum fluxes associated with eddies of midlatitude origin; the latter scale with the mean available potential energy in midlatitudes. The importance of these eddy momentum fluxes for the Hadley circulation strength gradually diminishes as the climate warms. The Hadley circulation generally widens as the climate warms, but at a modest rate that depends sensitively on how it is determined.
    publisherAmerican Meteorological Society
    titleResponse of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport
    typeJournal Paper
    journal volume68
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2010JAS3553.1
    journal fristpage769
    journal lastpage783
    treeJournal of the Atmospheric Sciences:;2010:;Volume( 068 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian