YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Failed Cyclogenetic Evolution of a West African Monsoon Perturbation Observed during AMMA SOP-3

    Source: Journal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 006::page 1863
    Author:
    Arnault, Joël
    ,
    Roux, Frank
    DOI: 10.1175/2010JAS3203.1
    Publisher: American Meteorological Society
    Abstract: The so-called ?perturbation D? was a nondeveloping West African disturbance observed near Dakar (Senegal) during special observing period (SOP) 3 of the African Monsoon Multidisciplinary Analysis (AMMA) in September 2006. Its mesoscale environment is described with the dropsonde data obtained during flights on three successive days with the Service des Avions Français Instrumentés pour la Recherche en Environnement Falcon-20 aircraft. Processes involved in this evolution are studied qualitatively with ECMWF reanalyses and Meteosat-9 images. The evolution of perturbation D was the result of an interaction between processes at different scales such as the African easterly jet (AEJ), a midtropospheric African easterly wave (AEW), a series of mesoscale convective systems, the monsoon flow, dry low- to midlevel anticyclonic Saharan air, and a midlatitude upper-level trough. The interaction between these processes is further investigated through a numerical simulation conducted with the French nonhydrostatic Méso-NH model with parameterized convection. The growth of the simulated disturbance is quantified with an energy budget including barotropic and baroclinic conversions of eddy kinetic energy, proposed previously by the authors for a limited domain. The development of the simulated system is found to result from barotropic?baroclinic growth over West Africa and baroclinic growth over the tropical eastern Atlantic. It is suggested that these energy conversions were the result of an adjustment of the wind in response to the pressure decrease, presumably caused by convective activity, and other synoptic processes. A comparison with the developing case of Helene (2006) reveals that both perturbations had similar evolutions over the continent but were associated with different synoptic conditions over the ocean. For perturbation D, the anticyclonic curvature of the AEJ, caused by the intensification of the eastern ridge by a strong flow of dry Saharan air, prohibited the formation of a closed and convergent circulation. Moreover, a midlatitude upper-level trough approaching from the northwest contributed to increase the northward stretching and then weakened the perturbation. It is therefore suggested that at least as important as the intensity of the AEW trough and associated convection leaving the West African continent are synoptic conditions associated with the Saharan heat low, the subtropical high pressure zone, and even the midlatitude circulation, all of which are instrumental in the (non)cyclogenetic evolution of AEWs in the Cape Verde Islands region.
    • Download: (6.330Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Failed Cyclogenetic Evolution of a West African Monsoon Perturbation Observed during AMMA SOP-3

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211899
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorArnault, Joël
    contributor authorRoux, Frank
    date accessioned2017-06-09T16:34:10Z
    date available2017-06-09T16:34:10Z
    date copyright2010/06/01
    date issued2010
    identifier issn0022-4928
    identifier otherams-70150.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211899
    description abstractThe so-called ?perturbation D? was a nondeveloping West African disturbance observed near Dakar (Senegal) during special observing period (SOP) 3 of the African Monsoon Multidisciplinary Analysis (AMMA) in September 2006. Its mesoscale environment is described with the dropsonde data obtained during flights on three successive days with the Service des Avions Français Instrumentés pour la Recherche en Environnement Falcon-20 aircraft. Processes involved in this evolution are studied qualitatively with ECMWF reanalyses and Meteosat-9 images. The evolution of perturbation D was the result of an interaction between processes at different scales such as the African easterly jet (AEJ), a midtropospheric African easterly wave (AEW), a series of mesoscale convective systems, the monsoon flow, dry low- to midlevel anticyclonic Saharan air, and a midlatitude upper-level trough. The interaction between these processes is further investigated through a numerical simulation conducted with the French nonhydrostatic Méso-NH model with parameterized convection. The growth of the simulated disturbance is quantified with an energy budget including barotropic and baroclinic conversions of eddy kinetic energy, proposed previously by the authors for a limited domain. The development of the simulated system is found to result from barotropic?baroclinic growth over West Africa and baroclinic growth over the tropical eastern Atlantic. It is suggested that these energy conversions were the result of an adjustment of the wind in response to the pressure decrease, presumably caused by convective activity, and other synoptic processes. A comparison with the developing case of Helene (2006) reveals that both perturbations had similar evolutions over the continent but were associated with different synoptic conditions over the ocean. For perturbation D, the anticyclonic curvature of the AEJ, caused by the intensification of the eastern ridge by a strong flow of dry Saharan air, prohibited the formation of a closed and convergent circulation. Moreover, a midlatitude upper-level trough approaching from the northwest contributed to increase the northward stretching and then weakened the perturbation. It is therefore suggested that at least as important as the intensity of the AEW trough and associated convection leaving the West African continent are synoptic conditions associated with the Saharan heat low, the subtropical high pressure zone, and even the midlatitude circulation, all of which are instrumental in the (non)cyclogenetic evolution of AEWs in the Cape Verde Islands region.
    publisherAmerican Meteorological Society
    titleFailed Cyclogenetic Evolution of a West African Monsoon Perturbation Observed during AMMA SOP-3
    typeJournal Paper
    journal volume67
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2010JAS3203.1
    journal fristpage1863
    journal lastpage1883
    treeJournal of the Atmospheric Sciences:;2010:;Volume( 067 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian