Show simple item record

contributor authorFerlay, Nicolas
contributor authorThieuleux, François
contributor authorCornet, Céline
contributor authorDavis, Anthony B.
contributor authorDubuisson, Philippe
contributor authorDucos, Fabrice
contributor authorParol, Frédéric
contributor authorRiédi, Jérôme
contributor authorVanbauce, Claudine
date accessioned2017-06-09T16:34:04Z
date available2017-06-09T16:34:04Z
date copyright2010/12/01
date issued2010
identifier issn1558-8424
identifier otherams-70115.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211861
description abstractNew evidence from collocated measurements, with support from theory and numerical simulations, that multidirectional measurements in the oxygen A band from the third Polarization and Directionality of the Earth?s Reflectances (POLDER-3) instrument on the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite platform within the ?A-Train? can help to characterize the vertical structure of clouds is presented. In the case of monolayered clouds, the standard POLDER cloud oxygen pressure product PO2 is shown to be sensitive to the cloud geometrical thickness H in two complementary ways: 1) PO2 is, on average, close to the pressure at the geometrical middle of the cloud layer (MCP) and methods are proposed for reducing the pressure difference PO2 ? MCP and 2) the angular standard deviation of PO2 and the cloud geometrical thickness H are tightly correlated for liquid clouds. Accounting for cloud phase, there is thus the potential to obtain a statistically reasonable estimate of H. Such derivation from passive measurements, as compared with or supplementing other observations, is expected to be of interest in a broad range of applications for which it is important to define better the macrophysical cloud parameters in a practical way.
publisherAmerican Meteorological Society
titleToward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from POLDER-3/PARASOL
typeJournal Paper
journal volume49
journal issue12
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/2010JAMC2550.1
journal fristpage2492
journal lastpage2507
treeJournal of Applied Meteorology and Climatology:;2010:;volume( 049 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record