Show simple item record

contributor authorMunchak, S. Joseph
contributor authorKummerow, Christian D.
date accessioned2017-06-09T16:34:02Z
date available2017-06-09T16:34:02Z
date copyright2011/02/01
date issued2010
identifier issn1558-8424
identifier otherams-70108.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211853
description abstractAlthough zonal mean rain rates from the Tropical Rainfall Measuring Mission (TRMM) are in good (<10%) agreement between the TRMM Microwave Imager (TMI) and precipitation radar (PR) rainfall algorithms, significant uncertainties remain in some regions where these estimates differ by as much as 30% over the period of record. Previous comparisons of these algorithms with ground validation (GV) rainfall have shown significant (>10%) biases of differing sign at various GV locations. Reducing these biases is important in the context of developing a database of cloud profiles for passive microwave retrievals that is based upon the PR-measured profiles. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution, and cloud water path (cLWP) are retrieved for each radar profile. The modular nature of the framework provides the opportunity to test the sensitivity of the retrieval to the inclusion of different measurements, retrieved parameters, and models for microwave scattering properties of hydrometeors. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, Florida, shows agreement within 2%, which exceeds previous algorithms? ability to match rainfall at these two sites. Errors between observed and simulated brightness temperatures are reduced and climatological features of the DSD, as measured by disdrometers at these two locations, are also reproduced in the output of the combined algorithm.
publisherAmerican Meteorological Society
titleA Modular Optimal Estimation Method for Combined Radar–Radiometer Precipitation Profiling
typeJournal Paper
journal volume50
journal issue2
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/2010JAMC2535.1
journal fristpage433
journal lastpage448
treeJournal of Applied Meteorology and Climatology:;2010:;volume( 050 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record