YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterizing Climate-Change Impacts on the 1.5-yr Flood Flow in Selected Basins across the United States: A Probabilistic Approach

    Source: Earth Interactions:;2010:;volume( 015 ):;issue: 018::page 1
    Author:
    Walker, John F.
    ,
    Hay, Lauren E.
    ,
    Markstrom, Steven L.
    ,
    Dettinger, Michael D.
    DOI: 10.1175/2010EI379.1
    Publisher: American Meteorological Society
    Abstract: he U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models.Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates from current to various future decades in the ensemble of climate projections. Empirical orthogonal functions (EOFs) were fitted to the PRMS model output driven by the ensemble of climate projections and provided a basis for randomly (but representatively) generating realizations of hydrologic response to future climates. For each realization, the 1.5-yr flood was calculated to represent a flow important for sediment transport and channel geomorphology. The empirical probability density function (pdf) of the 1.5-yr flood was estimated using the results across the realizations for each basin. Of the 14 basins studied, 9 showed clear temporal shifts in the pdfs of the 1.5-yr flood projected into the twenty-first century. In the western United States, where the annual peak discharges are heavily influenced by snowmelt, three basins show at least a 10% increase in the 1.5-yr flood in the twenty-first century; the remaining two basins demonstrate increases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Four basins in the eastern Rockies/central United States show at least a 10% decrease in the 1.5-yr flood; the remaining two basins demonstrate decreases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Two basins in the eastern United States show at least a 10% decrease in the 1.5-yr flood; the remaining basin shows little or no change in the 1.5-yr flood.
    • Download: (2.290Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterizing Climate-Change Impacts on the 1.5-yr Flood Flow in Selected Basins across the United States: A Probabilistic Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211675
    Collections
    • Earth Interactions

    Show full item record

    contributor authorWalker, John F.
    contributor authorHay, Lauren E.
    contributor authorMarkstrom, Steven L.
    contributor authorDettinger, Michael D.
    date accessioned2017-06-09T16:33:27Z
    date available2017-06-09T16:33:27Z
    date copyright2011/06/01
    date issued2010
    identifier otherams-69950.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211675
    description abstracthe U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) model was applied to basins in 14 different hydroclimatic regions to determine the sensitivity and variability of the freshwater resources of the United States in the face of current climate-change projections. Rather than attempting to choose a most likely scenario from the results of the Intergovernmental Panel on Climate Change, an ensemble of climate simulations from five models under three emissions scenarios each was used to drive the basin models.Climate-change scenarios were generated for PRMS by modifying historical precipitation and temperature inputs; mean monthly climate change was derived by calculating changes in mean climates from current to various future decades in the ensemble of climate projections. Empirical orthogonal functions (EOFs) were fitted to the PRMS model output driven by the ensemble of climate projections and provided a basis for randomly (but representatively) generating realizations of hydrologic response to future climates. For each realization, the 1.5-yr flood was calculated to represent a flow important for sediment transport and channel geomorphology. The empirical probability density function (pdf) of the 1.5-yr flood was estimated using the results across the realizations for each basin. Of the 14 basins studied, 9 showed clear temporal shifts in the pdfs of the 1.5-yr flood projected into the twenty-first century. In the western United States, where the annual peak discharges are heavily influenced by snowmelt, three basins show at least a 10% increase in the 1.5-yr flood in the twenty-first century; the remaining two basins demonstrate increases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Four basins in the eastern Rockies/central United States show at least a 10% decrease in the 1.5-yr flood; the remaining two basins demonstrate decreases in the 1.5-yr flood, but the temporal shifts in the pdfs and the percent changes are not as distinct. Two basins in the eastern United States show at least a 10% decrease in the 1.5-yr flood; the remaining basin shows little or no change in the 1.5-yr flood.
    publisherAmerican Meteorological Society
    titleCharacterizing Climate-Change Impacts on the 1.5-yr Flood Flow in Selected Basins across the United States: A Probabilistic Approach
    typeJournal Paper
    journal volume15
    journal issue18
    journal titleEarth Interactions
    identifier doi10.1175/2010EI379.1
    journal fristpage1
    journal lastpage16
    treeEarth Interactions:;2010:;volume( 015 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian