YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nocturnal Tornado Climatology

    Source: Weather and Forecasting:;2009:;volume( 025 ):;issue: 002::page 545
    Author:
    Kis, Amanda K.
    ,
    Straka, Jerry M.
    DOI: 10.1175/2009WAF2222294.1
    Publisher: American Meteorological Society
    Abstract: Very few studies on nocturnal tornadoes have been performed, and operational forecasting of nocturnal tornadoes is often guided by the results of studies that are biased toward daytime tornadoes. However, it is likely that tornado environments vary significantly over the diurnal cycle. For example, the depth and nature of storm inflow may change as the daytime boundary layer transitions into a stable nighttime boundary layer, and a low-level jet (LLJ) may form above in the residual layer and free atmosphere. The study performed herein is used to investigate features unique to nocturnal boundary layers and the free atmosphere above that may affect nocturnal tornadoes. A climatology of significant (F2?F5) nocturnal tornadoes in the contiguous United States between 2004 and 2006 shows that environments deemed by previous climatologies as unfavorable for late afternoon/early evening tornadogenesis are in fact conducive to significant nocturnal tornadogenesis. These nocturnal environments may be characterized by marginal convective instability with shallow stable boundary layers. Substantial low-level shear, storm relative helicity (SREH), and exceptionally strong nocturnal low-level jets stand out as the most common features of significant nocturnal tornadoes and have utility in distinguishing environments of weak nocturnal tornadoes from environments of significant nocturnal tornadoes. Analysis of the data gathered in the climatology shows that the suggestions of existing tornado climatologies are inadequate and even misguiding for forecasting nocturnal tornadoes. Several recommendations for operational forecasting of nocturnal tornadoes are made based on the results of this climatology.
    • Download: (3.124Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nocturnal Tornado Climatology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211481
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorKis, Amanda K.
    contributor authorStraka, Jerry M.
    date accessioned2017-06-09T16:32:54Z
    date available2017-06-09T16:32:54Z
    date copyright2010/04/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-69775.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211481
    description abstractVery few studies on nocturnal tornadoes have been performed, and operational forecasting of nocturnal tornadoes is often guided by the results of studies that are biased toward daytime tornadoes. However, it is likely that tornado environments vary significantly over the diurnal cycle. For example, the depth and nature of storm inflow may change as the daytime boundary layer transitions into a stable nighttime boundary layer, and a low-level jet (LLJ) may form above in the residual layer and free atmosphere. The study performed herein is used to investigate features unique to nocturnal boundary layers and the free atmosphere above that may affect nocturnal tornadoes. A climatology of significant (F2?F5) nocturnal tornadoes in the contiguous United States between 2004 and 2006 shows that environments deemed by previous climatologies as unfavorable for late afternoon/early evening tornadogenesis are in fact conducive to significant nocturnal tornadogenesis. These nocturnal environments may be characterized by marginal convective instability with shallow stable boundary layers. Substantial low-level shear, storm relative helicity (SREH), and exceptionally strong nocturnal low-level jets stand out as the most common features of significant nocturnal tornadoes and have utility in distinguishing environments of weak nocturnal tornadoes from environments of significant nocturnal tornadoes. Analysis of the data gathered in the climatology shows that the suggestions of existing tornado climatologies are inadequate and even misguiding for forecasting nocturnal tornadoes. Several recommendations for operational forecasting of nocturnal tornadoes are made based on the results of this climatology.
    publisherAmerican Meteorological Society
    titleNocturnal Tornado Climatology
    typeJournal Paper
    journal volume25
    journal issue2
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222294.1
    journal fristpage545
    journal lastpage561
    treeWeather and Forecasting:;2009:;volume( 025 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian