YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System

    Source: Weather and Forecasting:;2010:;volume( 025 ):;issue: 001::page 303
    Author:
    Zhou, Binbin
    ,
    Du, Jun
    DOI: 10.1175/2009WAF2222289.1
    Publisher: American Meteorological Society
    Abstract: A new multivariable-based diagnostic fog-forecasting method has been developed at NCEP. The selection of these variables, their thresholds, and the influences on fog forecasting are discussed. With the inclusion of the algorithm in the model postprocessor, the fog forecast can now be provided centrally as direct NWP model guidance. The method can be easily adapted to other NWP models. Currently, knowledge of how well fog forecasts based on operational NWP models perform is lacking. To verify the new method and assess fog forecast skill, as well as to account for forecast uncertainty, this fog-forecasting algorithm is applied to a multimodel-based Mesoscale Ensemble Prediction System (MEPS). MEPS consists of 10 members using two regional models [the NCEP Nonhydrostatic Mesoscale Model (NMM) version of the Weather Research and Forecasting (WRF) model and the NCAR Advanced Research version of WRF (ARW)] with 15-km horizontal resolution. Each model has five members (one control and four perturbed members) using the breeding technique to perturb the initial conditions and was run once per day out to 36 h over eastern China for seven months (February?September 2008). Both deterministic and probabilistic forecasts were produced based on individual members, a one-model ensemble, and two-model ensembles. A case study and statistical verification, using both deterministic and probabilistic measuring scores, were performed against fog observations from 13 cities in eastern China. The verification was focused on the 12- and 36-h forecasts. By applying the various approaches, including the new fog detection scheme, ensemble technique, multimodel approach, and the increase in ensemble size, the fog forecast accuracy was steadily and dramatically improved in each of the approaches: from basically no skill at all [equitable threat score (ETS) = 0.063] to a skill level equivalent to that of warm-season precipitation forecasts of the current NWP models (0.334). Specifically, 1) the multivariable-based fog diagnostic method has a much higher detection capability than the liquid water content (LWC)-only based approach. Reasons why the multivariable approach works better than the LWC-only method were also illustrated. 2) The ensemble-based forecasts are, in general, superior to a single control forecast measured both deterministically and probabilistically. The case study also demonstrates that the ensemble approach could provide more societal value than a single forecast to end users, especially for low-probability significant events like fog. Deterministically, a forecast close to the ensemble median is particularly helpful. 3) The reliability of probabilistic forecasts can be effectively improved by using a multimodel ensemble instead of a single-model ensemble. For a small ensemble such as the one in this study, the increase in ensemble size is also important in improving probabilistic forecasts, although this effect is expected to decrease with the increase in ensemble size.
    • Download: (2.455Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fog Prediction from a Multimodel Mesoscale Ensemble Prediction System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211478
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorZhou, Binbin
    contributor authorDu, Jun
    date accessioned2017-06-09T16:32:53Z
    date available2017-06-09T16:32:53Z
    date copyright2010/02/01
    date issued2010
    identifier issn0882-8156
    identifier otherams-69772.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211478
    description abstractA new multivariable-based diagnostic fog-forecasting method has been developed at NCEP. The selection of these variables, their thresholds, and the influences on fog forecasting are discussed. With the inclusion of the algorithm in the model postprocessor, the fog forecast can now be provided centrally as direct NWP model guidance. The method can be easily adapted to other NWP models. Currently, knowledge of how well fog forecasts based on operational NWP models perform is lacking. To verify the new method and assess fog forecast skill, as well as to account for forecast uncertainty, this fog-forecasting algorithm is applied to a multimodel-based Mesoscale Ensemble Prediction System (MEPS). MEPS consists of 10 members using two regional models [the NCEP Nonhydrostatic Mesoscale Model (NMM) version of the Weather Research and Forecasting (WRF) model and the NCAR Advanced Research version of WRF (ARW)] with 15-km horizontal resolution. Each model has five members (one control and four perturbed members) using the breeding technique to perturb the initial conditions and was run once per day out to 36 h over eastern China for seven months (February?September 2008). Both deterministic and probabilistic forecasts were produced based on individual members, a one-model ensemble, and two-model ensembles. A case study and statistical verification, using both deterministic and probabilistic measuring scores, were performed against fog observations from 13 cities in eastern China. The verification was focused on the 12- and 36-h forecasts. By applying the various approaches, including the new fog detection scheme, ensemble technique, multimodel approach, and the increase in ensemble size, the fog forecast accuracy was steadily and dramatically improved in each of the approaches: from basically no skill at all [equitable threat score (ETS) = 0.063] to a skill level equivalent to that of warm-season precipitation forecasts of the current NWP models (0.334). Specifically, 1) the multivariable-based fog diagnostic method has a much higher detection capability than the liquid water content (LWC)-only based approach. Reasons why the multivariable approach works better than the LWC-only method were also illustrated. 2) The ensemble-based forecasts are, in general, superior to a single control forecast measured both deterministically and probabilistically. The case study also demonstrates that the ensemble approach could provide more societal value than a single forecast to end users, especially for low-probability significant events like fog. Deterministically, a forecast close to the ensemble median is particularly helpful. 3) The reliability of probabilistic forecasts can be effectively improved by using a multimodel ensemble instead of a single-model ensemble. For a small ensemble such as the one in this study, the increase in ensemble size is also important in improving probabilistic forecasts, although this effect is expected to decrease with the increase in ensemble size.
    publisherAmerican Meteorological Society
    titleFog Prediction from a Multimodel Mesoscale Ensemble Prediction System
    typeJournal Paper
    journal volume25
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222289.1
    journal fristpage303
    journal lastpage322
    treeWeather and Forecasting:;2010:;volume( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian