YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery

    Source: Weather and Forecasting:;2009:;volume( 024 ):;issue: 006::page 1558
    Author:
    Olander, Timothy L.
    ,
    Velden, Christopher S.
    DOI: 10.1175/2009WAF2222284.1
    Publisher: American Meteorological Society
    Abstract: A technique to identify and quantify intense convection in tropical cyclones (TCs) using bispectral, geostationary satellite imagery is explored. This technique involves differencing the water vapor (WV) and infrared window (IRW) channel brightness temperature values, which are available on all current operational geostationary weather satellites. Both the derived IRW minus WV (IRWV) imagery and the raw data values can be used in a variety of methods to provide TC forecasters with important information about current and future intensity trends, a component within the operational TC forecasting arena that has shown little improvement during the past few decades. In this paper several possible uses for this bispectral technique, both qualitative and quantitative, are explored and outlined. Qualitative monitoring of intense convection can be used as a proxy for passive microwave (MW) imager data obtained from polar-orbiting satellite platforms when not available. In addition, the derived imagery may aid in the TC storm center identification process, both manually and objectively, especially in difficult situations where the IRW imagery alone cannot be used such as when the storm circulation center and/or eye features are obscured by a cirrus canopy. Quantitative methods discussed involve the predictive quality of the IRWV data in terms of TC intensity changes, primarily during TC intensification. Strong correlations exist between storm intensity changes and IRWV values at varying 6-h forecast interval periods, peaking between the 12- and 24-h time periods. Implications for the use of the IRWV data on such objective satellite intensity estimate algorithms as the University of Wisconsin?Madison (UW) Cooperative Institute for Meteorological Satellite Studies (CIMSS) advanced Dvorak technique (ADT) are also discussed.
    • Download: (4.851Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211474
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorOlander, Timothy L.
    contributor authorVelden, Christopher S.
    date accessioned2017-06-09T16:32:52Z
    date available2017-06-09T16:32:52Z
    date copyright2009/12/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-69769.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211474
    description abstractA technique to identify and quantify intense convection in tropical cyclones (TCs) using bispectral, geostationary satellite imagery is explored. This technique involves differencing the water vapor (WV) and infrared window (IRW) channel brightness temperature values, which are available on all current operational geostationary weather satellites. Both the derived IRW minus WV (IRWV) imagery and the raw data values can be used in a variety of methods to provide TC forecasters with important information about current and future intensity trends, a component within the operational TC forecasting arena that has shown little improvement during the past few decades. In this paper several possible uses for this bispectral technique, both qualitative and quantitative, are explored and outlined. Qualitative monitoring of intense convection can be used as a proxy for passive microwave (MW) imager data obtained from polar-orbiting satellite platforms when not available. In addition, the derived imagery may aid in the TC storm center identification process, both manually and objectively, especially in difficult situations where the IRW imagery alone cannot be used such as when the storm circulation center and/or eye features are obscured by a cirrus canopy. Quantitative methods discussed involve the predictive quality of the IRWV data in terms of TC intensity changes, primarily during TC intensification. Strong correlations exist between storm intensity changes and IRWV values at varying 6-h forecast interval periods, peaking between the 12- and 24-h time periods. Implications for the use of the IRWV data on such objective satellite intensity estimate algorithms as the University of Wisconsin?Madison (UW) Cooperative Institute for Meteorological Satellite Studies (CIMSS) advanced Dvorak technique (ADT) are also discussed.
    publisherAmerican Meteorological Society
    titleTropical Cyclone Convection and Intensity Analysis Using Differenced Infrared and Water Vapor Imagery
    typeJournal Paper
    journal volume24
    journal issue6
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222284.1
    journal fristpage1558
    journal lastpage1572
    treeWeather and Forecasting:;2009:;volume( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian