YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intercomparison of Spatial Forecast Verification Methods: Identifying Skillful Spatial Scales Using the Fractions Skill Score

    Source: Weather and Forecasting:;2010:;volume( 025 ):;issue: 001::page 343
    Author:
    Mittermaier, Marion
    ,
    Roberts, Nigel
    DOI: 10.1175/2009WAF2222260.1
    Publisher: American Meteorological Society
    Abstract: The fractions skill score (FSS) was one of the measures that formed part of the Intercomparison of Spatial Forecast Verification Methods project. The FSS was used to assess a common dataset that consisted of real and perturbed Weather Research and Forecasting (WRF) model precipitation forecasts, as well as geometric cases. These datasets are all based on the NCEP 240 grid, which translates to approximately 4-km resolution over the contiguous United States. The geometric cases showed that the FSS can provide a truthful assessment of displacement errors and forecast skill. In addition, the FSS can be used to determine the scale at which an acceptable level of skill is reached and this usage is perhaps more helpful than interpreting the actual FSS value. This spatial-scale approach is becoming more popular for monitoring operational forecast performance. The study also shows how the FSS responds to forecast bias. A more biased forecast always gives lower FSS values at large scales and usually at smaller scales. It is possible, however, for a more biased forecast to give a higher score at smaller scales, when additional rain overlaps the observed rain. However, given a sufficiently large sample of forecasts, a more biased forecast system will score lower. The use of percentile thresholds can remove the impacts of the bias. When the proportion of the domain that is ?wet? (the wet-area ratio) is small, subtle differences introduced through near-threshold misses can lead to large changes in FSS magnitude in individual cases (primarily because the bias is changed). Reliable statistics for small wet-area ratios require a larger sample of forecasts. Care needs to be taken in the choice of verification domain. For high-resolution models, the domain should be large enough to encompass the length scale of the typical mesoscale forcing (e.g., upper-level troughs or squall lines). If the domain is too large, the wet-area ratios will always be small. If the domain is too small, fluctuations in the wet-area ratio can be large and larger spatial errors may be missed. The FSS is a good measure of the spatial accuracy of precipitation forecasts. Different methods are needed to determine other patterns of behavior.
    • Download: (1.252Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intercomparison of Spatial Forecast Verification Methods: Identifying Skillful Spatial Scales Using the Fractions Skill Score

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211459
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMittermaier, Marion
    contributor authorRoberts, Nigel
    date accessioned2017-06-09T16:32:49Z
    date available2017-06-09T16:32:49Z
    date copyright2010/02/01
    date issued2010
    identifier issn0882-8156
    identifier otherams-69755.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211459
    description abstractThe fractions skill score (FSS) was one of the measures that formed part of the Intercomparison of Spatial Forecast Verification Methods project. The FSS was used to assess a common dataset that consisted of real and perturbed Weather Research and Forecasting (WRF) model precipitation forecasts, as well as geometric cases. These datasets are all based on the NCEP 240 grid, which translates to approximately 4-km resolution over the contiguous United States. The geometric cases showed that the FSS can provide a truthful assessment of displacement errors and forecast skill. In addition, the FSS can be used to determine the scale at which an acceptable level of skill is reached and this usage is perhaps more helpful than interpreting the actual FSS value. This spatial-scale approach is becoming more popular for monitoring operational forecast performance. The study also shows how the FSS responds to forecast bias. A more biased forecast always gives lower FSS values at large scales and usually at smaller scales. It is possible, however, for a more biased forecast to give a higher score at smaller scales, when additional rain overlaps the observed rain. However, given a sufficiently large sample of forecasts, a more biased forecast system will score lower. The use of percentile thresholds can remove the impacts of the bias. When the proportion of the domain that is ?wet? (the wet-area ratio) is small, subtle differences introduced through near-threshold misses can lead to large changes in FSS magnitude in individual cases (primarily because the bias is changed). Reliable statistics for small wet-area ratios require a larger sample of forecasts. Care needs to be taken in the choice of verification domain. For high-resolution models, the domain should be large enough to encompass the length scale of the typical mesoscale forcing (e.g., upper-level troughs or squall lines). If the domain is too large, the wet-area ratios will always be small. If the domain is too small, fluctuations in the wet-area ratio can be large and larger spatial errors may be missed. The FSS is a good measure of the spatial accuracy of precipitation forecasts. Different methods are needed to determine other patterns of behavior.
    publisherAmerican Meteorological Society
    titleIntercomparison of Spatial Forecast Verification Methods: Identifying Skillful Spatial Scales Using the Fractions Skill Score
    typeJournal Paper
    journal volume25
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222260.1
    journal fristpage343
    journal lastpage354
    treeWeather and Forecasting:;2010:;volume( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian