YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Toward Better Understanding of the Contiguous Rain Area (CRA) Method for Spatial Forecast Verification

    Source: Weather and Forecasting:;2009:;volume( 024 ):;issue: 005::page 1401
    Author:
    Ebert, Elizabeth E.
    ,
    Gallus, William A.
    DOI: 10.1175/2009WAF2222252.1
    Publisher: American Meteorological Society
    Abstract: The contiguous rain area (CRA) method for spatial forecast verification is a features-based approach that evaluates the properties of forecast rain systems, namely, their location, size, intensity, and finescale pattern. It is one of many recently developed spatial verification approaches that are being evaluated as part of a Spatial Forecast Verification Methods Intercomparison Project. To better understand the strengths and weaknesses of the CRA method, it has been tested here on a set of idealized geometric and perturbed forecasts with known errors, as well as nine precipitation forecasts from three high-resolution numerical weather prediction models. The CRA method was able to identify the known errors for the geometric forecasts, but only after a modification was introduced to allow nonoverlapping forecast and observed features to be matched. For the perturbed cases in which a radar rain field was spatially translated and amplified to simulate forecast errors, the CRA method also reproduced the known errors except when a high-intensity threshold was used to define the CRA (≥10 mm h?1) and a large translation error was imposed (>200 km). The decomposition of total error into displacement, volume, and pattern components reflected the source of the error almost all of the time when a mean squared error formulation was used, but not necessarily when a correlation-based formulation was used. When applied to real forecasts, the CRA method gave similar results when either best-fit criteria, minimization of the mean squared error, or maximization of the correlation coefficient, was chosen for matching forecast and observed features. The diagnosed displacement error was somewhat sensitive to the choice of search distance. Of the many diagnostics produced by this method, the errors in the mean and peak rain rate between the forecast and observed features showed the best correspondence with subjective evaluations of the forecasts, while the spatial correlation coefficient (after matching) did not reflect the subjective judgments.
    • Download: (2.693Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Toward Better Understanding of the Contiguous Rain Area (CRA) Method for Spatial Forecast Verification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211451
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorEbert, Elizabeth E.
    contributor authorGallus, William A.
    date accessioned2017-06-09T16:32:48Z
    date available2017-06-09T16:32:48Z
    date copyright2009/10/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-69748.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211451
    description abstractThe contiguous rain area (CRA) method for spatial forecast verification is a features-based approach that evaluates the properties of forecast rain systems, namely, their location, size, intensity, and finescale pattern. It is one of many recently developed spatial verification approaches that are being evaluated as part of a Spatial Forecast Verification Methods Intercomparison Project. To better understand the strengths and weaknesses of the CRA method, it has been tested here on a set of idealized geometric and perturbed forecasts with known errors, as well as nine precipitation forecasts from three high-resolution numerical weather prediction models. The CRA method was able to identify the known errors for the geometric forecasts, but only after a modification was introduced to allow nonoverlapping forecast and observed features to be matched. For the perturbed cases in which a radar rain field was spatially translated and amplified to simulate forecast errors, the CRA method also reproduced the known errors except when a high-intensity threshold was used to define the CRA (≥10 mm h?1) and a large translation error was imposed (>200 km). The decomposition of total error into displacement, volume, and pattern components reflected the source of the error almost all of the time when a mean squared error formulation was used, but not necessarily when a correlation-based formulation was used. When applied to real forecasts, the CRA method gave similar results when either best-fit criteria, minimization of the mean squared error, or maximization of the correlation coefficient, was chosen for matching forecast and observed features. The diagnosed displacement error was somewhat sensitive to the choice of search distance. Of the many diagnostics produced by this method, the errors in the mean and peak rain rate between the forecast and observed features showed the best correspondence with subjective evaluations of the forecasts, while the spatial correlation coefficient (after matching) did not reflect the subjective judgments.
    publisherAmerican Meteorological Society
    titleToward Better Understanding of the Contiguous Rain Area (CRA) Method for Spatial Forecast Verification
    typeJournal Paper
    journal volume24
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222252.1
    journal fristpage1401
    journal lastpage1415
    treeWeather and Forecasting:;2009:;volume( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian