YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Verification with Variograms

    Source: Weather and Forecasting:;2009:;volume( 024 ):;issue: 004::page 1102
    Author:
    Marzban, Caren
    ,
    Sandgathe, Scott
    DOI: 10.1175/2009WAF2222122.1
    Publisher: American Meteorological Society
    Abstract: The verification of a gridded forecast field, for example, one produced by numerical weather prediction (NWP) models, cannot be performed on a gridpoint-by-gridpoint basis; that type of approach would ignore the spatial structures present in both forecast and observation fields, leading to misinformative or noninformative verification results. A variety of methods have been proposed to acknowledge the spatial structure of the fields. Here, a method is examined that compares the two fields in terms of their variograms. Two types of variograms are examined: one examines correlation on different spatial scales and is a measure of texture; the other type of variogram is additionally sensitive to the size and location of objects in a field and can assess size and location errors. Using these variograms, the forecasts of three NWP model formulations are compared with observations/analysis, on a dataset consisting of 30 days in spring 2005. It is found that within statistical uncertainty the three formulations are comparable with one another in terms of forecasting the spatial structure of observed reflectivity fields. None, however, produce the observed structure across all scales, and all tend to overforecast the spatial extent and also forecast a smoother precipitation (reflectivity) field. A finer comparison suggests that the University of Oklahoma 2-km resolution Advanced Research Weather Research and Forecasting (WRF-ARW) model and the National Center for Atmospheric Research (NCAR) 4-km resolution WRF-ARW slightly outperform the 4.5-km WRF-Nonhydrostatic Mesoscale Model (NMM), developed by the National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP), in terms of producing forecasts whose spatial structures are closer to that of the observed field.
    • Download: (1.841Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Verification with Variograms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211396
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMarzban, Caren
    contributor authorSandgathe, Scott
    date accessioned2017-06-09T16:32:36Z
    date available2017-06-09T16:32:36Z
    date copyright2009/08/01
    date issued2009
    identifier issn0882-8156
    identifier otherams-69699.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211396
    description abstractThe verification of a gridded forecast field, for example, one produced by numerical weather prediction (NWP) models, cannot be performed on a gridpoint-by-gridpoint basis; that type of approach would ignore the spatial structures present in both forecast and observation fields, leading to misinformative or noninformative verification results. A variety of methods have been proposed to acknowledge the spatial structure of the fields. Here, a method is examined that compares the two fields in terms of their variograms. Two types of variograms are examined: one examines correlation on different spatial scales and is a measure of texture; the other type of variogram is additionally sensitive to the size and location of objects in a field and can assess size and location errors. Using these variograms, the forecasts of three NWP model formulations are compared with observations/analysis, on a dataset consisting of 30 days in spring 2005. It is found that within statistical uncertainty the three formulations are comparable with one another in terms of forecasting the spatial structure of observed reflectivity fields. None, however, produce the observed structure across all scales, and all tend to overforecast the spatial extent and also forecast a smoother precipitation (reflectivity) field. A finer comparison suggests that the University of Oklahoma 2-km resolution Advanced Research Weather Research and Forecasting (WRF-ARW) model and the National Center for Atmospheric Research (NCAR) 4-km resolution WRF-ARW slightly outperform the 4.5-km WRF-Nonhydrostatic Mesoscale Model (NMM), developed by the National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP), in terms of producing forecasts whose spatial structures are closer to that of the observed field.
    publisherAmerican Meteorological Society
    titleVerification with Variograms
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/2009WAF2222122.1
    journal fristpage1102
    journal lastpage1120
    treeWeather and Forecasting:;2009:;volume( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian