YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Climatology of Midlatitude Mesoscale Convective Vortices in the Rapid Update Cycle

    Source: Monthly Weather Review:;2009:;volume( 138 ):;issue: 005::page 1940
    Author:
    James, Eric P.
    ,
    Johnson, Richard H.
    DOI: 10.1175/2009MWR3208.1
    Publisher: American Meteorological Society
    Abstract: Climatological characteristics of mesoscale convective vortices (MCVs) occurring in the state of Oklahoma during the late spring and summer of four years are investigated. The MCV cases are selected based on vortex detection by an objective algorithm operating on analyses from the Rapid Update Cycle (RUC) model. Consistent with a previous study, true MCVs represent only about 20% of the mesoscale relative vorticity maxima detected by the algorithm. The MCVs have a broad range of radii and intensities, and their longevities range between 1 and 54 h. Their median radius is about 200 km, and their median midlevel relative vorticity is 1.2 ? 10?4 s?1. There appears to be no significant relationship between MCV longevity and intensity. Similar to past estimates, approximately 40% of the MCVs generate secondary convection within their circulations. The mean synoptic-scale MCV environment is determined by the use of a RUC-based composite analysis at four different stages in the MCV life cycle, defined based on vortex detection by the objective algorithm. MCV initiation is closely tied to the diurnal cycle of convection over the Great Plains, with MCVs typically forming in the early morning, near the time of maximum extent of nocturnal mesoscale convective systems (MCSs). Features related to the parent MCSs, including upper-level divergent outflow, midlevel convergence, and a low-level jet, are prominent in the initiating MCV composite. The most significant feature later in the MCV life cycle is a persistent mesoscale trough in the midlevel height field. The potential vorticity (PV) structure of the composite MCV consists of a midlevel maximum and an upper-level minimum, with some extension of elevated PV into the lower troposphere as the vortex matures. The environment immediately downshear of the MCV is more conducive to secondary convection than the environment upshear of the MCV. This midlatitude MCV climatology represents an extension of past individual case studies by providing mean characteristics of a large MCV population; these statistics are suitable for the verification of MCV simulations. Also presented is the first high-resolution composite analysis of the MCV environment at different stages of the MCV life cycle, which will aid in identifying and forecasting these systems.
    • Download: (3.434Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Climatology of Midlatitude Mesoscale Convective Vortices in the Rapid Update Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211386
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorJames, Eric P.
    contributor authorJohnson, Richard H.
    date accessioned2017-06-09T16:32:34Z
    date available2017-06-09T16:32:34Z
    date copyright2010/05/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-69690.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211386
    description abstractClimatological characteristics of mesoscale convective vortices (MCVs) occurring in the state of Oklahoma during the late spring and summer of four years are investigated. The MCV cases are selected based on vortex detection by an objective algorithm operating on analyses from the Rapid Update Cycle (RUC) model. Consistent with a previous study, true MCVs represent only about 20% of the mesoscale relative vorticity maxima detected by the algorithm. The MCVs have a broad range of radii and intensities, and their longevities range between 1 and 54 h. Their median radius is about 200 km, and their median midlevel relative vorticity is 1.2 ? 10?4 s?1. There appears to be no significant relationship between MCV longevity and intensity. Similar to past estimates, approximately 40% of the MCVs generate secondary convection within their circulations. The mean synoptic-scale MCV environment is determined by the use of a RUC-based composite analysis at four different stages in the MCV life cycle, defined based on vortex detection by the objective algorithm. MCV initiation is closely tied to the diurnal cycle of convection over the Great Plains, with MCVs typically forming in the early morning, near the time of maximum extent of nocturnal mesoscale convective systems (MCSs). Features related to the parent MCSs, including upper-level divergent outflow, midlevel convergence, and a low-level jet, are prominent in the initiating MCV composite. The most significant feature later in the MCV life cycle is a persistent mesoscale trough in the midlevel height field. The potential vorticity (PV) structure of the composite MCV consists of a midlevel maximum and an upper-level minimum, with some extension of elevated PV into the lower troposphere as the vortex matures. The environment immediately downshear of the MCV is more conducive to secondary convection than the environment upshear of the MCV. This midlatitude MCV climatology represents an extension of past individual case studies by providing mean characteristics of a large MCV population; these statistics are suitable for the verification of MCV simulations. Also presented is the first high-resolution composite analysis of the MCV environment at different stages of the MCV life cycle, which will aid in identifying and forecasting these systems.
    publisherAmerican Meteorological Society
    titleA Climatology of Midlatitude Mesoscale Convective Vortices in the Rapid Update Cycle
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR3208.1
    journal fristpage1940
    journal lastpage1956
    treeMonthly Weather Review:;2009:;volume( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian