YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Tropical Transition of an Alpine Lee Cyclone. Part I: Case Analysis and Evaluation of Numerical Guidance

    Source: Monthly Weather Review:;2009:;volume( 138 ):;issue: 006::page 2281
    Author:
    McTaggart-Cowan, Ron
    ,
    Galarneau, Thomas J.
    ,
    Bosart, Lance F.
    ,
    Milbrandt, Jason A.
    DOI: 10.1175/2009MWR3147.1
    Publisher: American Meteorological Society
    Abstract: The development and tropical transition (TT) of a subsynoptic-scale cyclone in the Gulf of Genoa during the Mesoscale Alpine Project (MAP) demonstration of probabilistic hydrological and atmospheric simulation of flood events in the alpine region (D-PHASE) project is investigated using analyses and model simulations. Cyclogenesis occurs in association with the passage of a synoptic-scale trough and attendant surface cold front across the Alps on 15 November 2007. An embedded coherent tropopause disturbance (CTD) plays an important role in promoting the initial development of the lower-level vortex by simultaneously providing quasigeostrophic forcing for ascent and reducing the bulk column stability over warm Mediterranean waters. Persistent convection thereafter erodes the CTD as the storm transitions into a hurricane-like vortex. In addition to this upper-level forcing, a pair of diabatically generated lower-level cyclonic potential vorticity (PV) features associated with distinct flow regimes is potentially important to the cyclogenetic process in this case. The first, a warm surface potential temperature anomaly, is generated during cross-barrier flow by prefrontal upslope precipitation on the Alpine northside, followed by parcel descent in the lee. The second PV feature is a mountain-scale PV banner that extends southward from the southwestern tip of the Alps as the flow is deflected around the mountain chain. Numerical guidance for this case is evaluated on its ability to accurately depict the development and evolution of the cyclone. Comparison of a triply nested integration (grid spacings of 33, 10, and 2.5 km) with observations and analyses demonstrates that the model is capable of simulating the salient features of the event. Combining reliable guidance from high-resolution modeling systems with the paradigms of lee cyclone development and the emerging concepts of TT promotes an improved understanding of these potentially high-impact events.
    • Download: (10.55Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Tropical Transition of an Alpine Lee Cyclone. Part I: Case Analysis and Evaluation of Numerical Guidance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211371
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMcTaggart-Cowan, Ron
    contributor authorGalarneau, Thomas J.
    contributor authorBosart, Lance F.
    contributor authorMilbrandt, Jason A.
    date accessioned2017-06-09T16:32:31Z
    date available2017-06-09T16:32:31Z
    date copyright2010/06/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-69676.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211371
    description abstractThe development and tropical transition (TT) of a subsynoptic-scale cyclone in the Gulf of Genoa during the Mesoscale Alpine Project (MAP) demonstration of probabilistic hydrological and atmospheric simulation of flood events in the alpine region (D-PHASE) project is investigated using analyses and model simulations. Cyclogenesis occurs in association with the passage of a synoptic-scale trough and attendant surface cold front across the Alps on 15 November 2007. An embedded coherent tropopause disturbance (CTD) plays an important role in promoting the initial development of the lower-level vortex by simultaneously providing quasigeostrophic forcing for ascent and reducing the bulk column stability over warm Mediterranean waters. Persistent convection thereafter erodes the CTD as the storm transitions into a hurricane-like vortex. In addition to this upper-level forcing, a pair of diabatically generated lower-level cyclonic potential vorticity (PV) features associated with distinct flow regimes is potentially important to the cyclogenetic process in this case. The first, a warm surface potential temperature anomaly, is generated during cross-barrier flow by prefrontal upslope precipitation on the Alpine northside, followed by parcel descent in the lee. The second PV feature is a mountain-scale PV banner that extends southward from the southwestern tip of the Alps as the flow is deflected around the mountain chain. Numerical guidance for this case is evaluated on its ability to accurately depict the development and evolution of the cyclone. Comparison of a triply nested integration (grid spacings of 33, 10, and 2.5 km) with observations and analyses demonstrates that the model is capable of simulating the salient features of the event. Combining reliable guidance from high-resolution modeling systems with the paradigms of lee cyclone development and the emerging concepts of TT promotes an improved understanding of these potentially high-impact events.
    publisherAmerican Meteorological Society
    titleDevelopment and Tropical Transition of an Alpine Lee Cyclone. Part I: Case Analysis and Evaluation of Numerical Guidance
    typeJournal Paper
    journal volume138
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR3147.1
    journal fristpage2281
    journal lastpage2307
    treeMonthly Weather Review:;2009:;volume( 138 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian