YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Satellite Microwave Surface Observations in Tropical Cyclones

    Source: Monthly Weather Review:;2010:;volume( 138 ):;issue: 002::page 421
    Author:
    Quilfen, Yves
    ,
    Chapron, Bertrand
    ,
    Tournadre, Jean
    DOI: 10.1175/2009MWR3040.1
    Publisher: American Meteorological Society
    Abstract: Sea surface estimates of local winds, waves, and rain-rate conditions are crucial to complement infrared/visible satellite images in estimating the strength of tropical cyclones (TCs). Satellite measurements at microwave frequencies are thus key elements of present and future observing systems. Available for more than 20 years, passive microwave measurements are very valuable but still suffer from insufficient resolution and poor wind vector retrievals in the rainy conditions encountered in and around tropical cyclones. Scatterometer and synthetic aperture radar active microwave measurements performed at the C and Ku band on board the European Remote Sensing (ERS), the Meteorological Operational (MetOp), the Quick Scatterometer (QuikSCAT), the Environmental Satellite (Envisat), and RadarSat satellites can also be used to map the surface wind field in storms. Their accuracy is limited in the case of heavy rain and possible saturation of the microwave signals is reported. Altimeter dual-frequency measurements have also been shown to provide along-track information related to surface wind speed, wave height, and vertically integrated rain rate at about 6-km resolution. Although limited for operational use by their dimensional sampling, the dual-frequency capability makes altimeters a unique satellite-borne sensor to perform measurements of key surface parameters in a consistent way. To illustrate this capability two Jason-1 altimeter passes over Hurricanes Isabel and Wilma are examined. The area of maximum TC intensity, as described by the National Hurricane Center and by the altimeter, is compared for these two cases. Altimeter surface wind speed and rainfall-rate observations are further compared with measurements performed by other remote sensors, namely, the Tropical Rainfall Measuring Mission instruments and the airborne Stepped Frequency Microwave Radiometer.
    • Download: (3.625Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Satellite Microwave Surface Observations in Tropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211317
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorQuilfen, Yves
    contributor authorChapron, Bertrand
    contributor authorTournadre, Jean
    date accessioned2017-06-09T16:32:21Z
    date available2017-06-09T16:32:21Z
    date copyright2010/02/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-69627.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211317
    description abstractSea surface estimates of local winds, waves, and rain-rate conditions are crucial to complement infrared/visible satellite images in estimating the strength of tropical cyclones (TCs). Satellite measurements at microwave frequencies are thus key elements of present and future observing systems. Available for more than 20 years, passive microwave measurements are very valuable but still suffer from insufficient resolution and poor wind vector retrievals in the rainy conditions encountered in and around tropical cyclones. Scatterometer and synthetic aperture radar active microwave measurements performed at the C and Ku band on board the European Remote Sensing (ERS), the Meteorological Operational (MetOp), the Quick Scatterometer (QuikSCAT), the Environmental Satellite (Envisat), and RadarSat satellites can also be used to map the surface wind field in storms. Their accuracy is limited in the case of heavy rain and possible saturation of the microwave signals is reported. Altimeter dual-frequency measurements have also been shown to provide along-track information related to surface wind speed, wave height, and vertically integrated rain rate at about 6-km resolution. Although limited for operational use by their dimensional sampling, the dual-frequency capability makes altimeters a unique satellite-borne sensor to perform measurements of key surface parameters in a consistent way. To illustrate this capability two Jason-1 altimeter passes over Hurricanes Isabel and Wilma are examined. The area of maximum TC intensity, as described by the National Hurricane Center and by the altimeter, is compared for these two cases. Altimeter surface wind speed and rainfall-rate observations are further compared with measurements performed by other remote sensors, namely, the Tropical Rainfall Measuring Mission instruments and the airborne Stepped Frequency Microwave Radiometer.
    publisherAmerican Meteorological Society
    titleSatellite Microwave Surface Observations in Tropical Cyclones
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR3040.1
    journal fristpage421
    journal lastpage437
    treeMonthly Weather Review:;2010:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian