YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection

    Source: Monthly Weather Review:;2010:;volume( 138 ):;issue: 001::page 140
    Author:
    James, Richard P.
    ,
    Markowski, Paul M.
    DOI: 10.1175/2009MWR3018.1
    Publisher: American Meteorological Society
    Abstract: A three-dimensional cloud model was used to investigate the sensitivity of deep convective storms to dry air above the cloud base. In simulations of both quasi-linear convective systems and supercells, dry air aloft was found to reduce the intensity of the convection, as measured by updraft mass flux and total condensation and rainfall. In high-CAPE line-type simulations, the downdraft mass flux and cold pool strength were enhanced at the rear of the trailing stratiform region in a drier environment. However, the downdraft and cold pool strengths were unchanged in the convective region, and were also unchanged or reduced in simulations of supercells and of line-type systems at lower CAPE. This result contrasts with previous interpretations of the role of dry air aloft in the development of severe low-level outflow winds. The buoyancy-sorting framework is used to interpret the influence of environmental humidity on the updraft entrainment process and the observed strong dependence on the environmental CAPE. The reduction in convective vigor caused by dry air is relatively inconsequential at very high CAPE, but low-CAPE convection requires a humid environment in order to grow by entrainment. The simulated responses of the downdraft and cold pool intensities to dry air aloft reflected the changes in diabatic cooling rates within the downdraft formation regions. When dry air was present, the decline in hydrometeor mass exerted a negative tendency on the diabatic cooling rates and acted to offset the favorable effects of dry air for cooling by evaporation. Thus, with the exception of the rearward portions of the high-CAPE line-type simulations, dry air was unable to strengthen the downdrafts and cold pool. A review of the literature demonstrates that observational evidence does not unambiguously support the concept that dry air aloft favors downdraft and outflow strength. It is also shown that the use of warm rain microphysics in previous modeling studies may have reinforced the tendency to overemphasize the role of dry air aloft.
    • Download: (4.096Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211305
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorJames, Richard P.
    contributor authorMarkowski, Paul M.
    date accessioned2017-06-09T16:32:19Z
    date available2017-06-09T16:32:19Z
    date copyright2010/01/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-69616.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211305
    description abstractA three-dimensional cloud model was used to investigate the sensitivity of deep convective storms to dry air above the cloud base. In simulations of both quasi-linear convective systems and supercells, dry air aloft was found to reduce the intensity of the convection, as measured by updraft mass flux and total condensation and rainfall. In high-CAPE line-type simulations, the downdraft mass flux and cold pool strength were enhanced at the rear of the trailing stratiform region in a drier environment. However, the downdraft and cold pool strengths were unchanged in the convective region, and were also unchanged or reduced in simulations of supercells and of line-type systems at lower CAPE. This result contrasts with previous interpretations of the role of dry air aloft in the development of severe low-level outflow winds. The buoyancy-sorting framework is used to interpret the influence of environmental humidity on the updraft entrainment process and the observed strong dependence on the environmental CAPE. The reduction in convective vigor caused by dry air is relatively inconsequential at very high CAPE, but low-CAPE convection requires a humid environment in order to grow by entrainment. The simulated responses of the downdraft and cold pool intensities to dry air aloft reflected the changes in diabatic cooling rates within the downdraft formation regions. When dry air was present, the decline in hydrometeor mass exerted a negative tendency on the diabatic cooling rates and acted to offset the favorable effects of dry air for cooling by evaporation. Thus, with the exception of the rearward portions of the high-CAPE line-type simulations, dry air was unable to strengthen the downdrafts and cold pool. A review of the literature demonstrates that observational evidence does not unambiguously support the concept that dry air aloft favors downdraft and outflow strength. It is also shown that the use of warm rain microphysics in previous modeling studies may have reinforced the tendency to overemphasize the role of dry air aloft.
    publisherAmerican Meteorological Society
    titleA Numerical Investigation of the Effects of Dry Air Aloft on Deep Convection
    typeJournal Paper
    journal volume138
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR3018.1
    journal fristpage140
    journal lastpage161
    treeMonthly Weather Review:;2010:;volume( 138 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian