YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Examination of Background Error Correlations between Mass and Rotational Wind over Precipitation Regions

    Source: Monthly Weather Review:;2010:;volume( 138 ):;issue: 002::page 563
    Author:
    Caron, Jean-François
    ,
    Fillion, Luc
    DOI: 10.1175/2009MWR2998.1
    Publisher: American Meteorological Society
    Abstract: The differences in the balance characteristics between dry and precipitation areas in estimated short-term forecast error fields are investigated. The motivation is to see if dry and precipitation areas need to be treated differently in atmospheric data assimilation systems. Using an ensemble of lagged forecast differences, it is shown that perturbations are, on average, farther away from geostrophic balance over precipitation areas than over dry areas and that the deviation from geostrophic balance is proportional to the intensity of precipitation. Following these results, the authors investigate whether some improvements in the coupling between mass and rotational wind increments over precipitation areas can be achieved by using only the precipitation points within an ensemble of estimated forecast errors to construct a so-called diabatic balance operator by linear regression. Comparisons with a traditional approach to construct balance operators by linear regression show that the new approach leads to a gradually significant improvement (related to the intensity of the diabatic processes) of the accuracy of the coupling over precipitation areas as judged from an ensemble of lagged forecast differences. Results from a series of simplified data assimilation experiments show that the new balance operators can produce analysis increments that are substantially different from those associated with the traditional balance operator, particularly for observations located in the lower atmosphere. Issues concerning the implementation of this new approach in a full-fledged analysis system are briefly discussed but their investigations are left for a following study.
    • Download: (2.812Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Examination of Background Error Correlations between Mass and Rotational Wind over Precipitation Regions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211292
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCaron, Jean-François
    contributor authorFillion, Luc
    date accessioned2017-06-09T16:32:17Z
    date available2017-06-09T16:32:17Z
    date copyright2010/02/01
    date issued2010
    identifier issn0027-0644
    identifier otherams-69604.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211292
    description abstractThe differences in the balance characteristics between dry and precipitation areas in estimated short-term forecast error fields are investigated. The motivation is to see if dry and precipitation areas need to be treated differently in atmospheric data assimilation systems. Using an ensemble of lagged forecast differences, it is shown that perturbations are, on average, farther away from geostrophic balance over precipitation areas than over dry areas and that the deviation from geostrophic balance is proportional to the intensity of precipitation. Following these results, the authors investigate whether some improvements in the coupling between mass and rotational wind increments over precipitation areas can be achieved by using only the precipitation points within an ensemble of estimated forecast errors to construct a so-called diabatic balance operator by linear regression. Comparisons with a traditional approach to construct balance operators by linear regression show that the new approach leads to a gradually significant improvement (related to the intensity of the diabatic processes) of the accuracy of the coupling over precipitation areas as judged from an ensemble of lagged forecast differences. Results from a series of simplified data assimilation experiments show that the new balance operators can produce analysis increments that are substantially different from those associated with the traditional balance operator, particularly for observations located in the lower atmosphere. Issues concerning the implementation of this new approach in a full-fledged analysis system are briefly discussed but their investigations are left for a following study.
    publisherAmerican Meteorological Society
    titleAn Examination of Background Error Correlations between Mass and Rotational Wind over Precipitation Regions
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR2998.1
    journal fristpage563
    journal lastpage578
    treeMonthly Weather Review:;2010:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian