YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Simulated Tropical Cyclone Structure and Intensity to Horizontal Resolution

    Source: Monthly Weather Review:;2009:;volume( 138 ):;issue: 003::page 688
    Author:
    Gentry, Megan S.
    ,
    Lackmann, Gary M.
    DOI: 10.1175/2009MWR2976.1
    Publisher: American Meteorological Society
    Abstract: The Weather Research and Forecasting (WRF) model is used to test the sensitivity of simulations of Hurricane Ivan (2004) to changes in horizontal grid spacing for grid lengths from 8 to 1 km. As resolution is increased, minimum central pressure decreases significantly (by 30 hPa from 8- to 1-km grid spacing), although this increase in intensity is not uniform across similar reductions in grid spacing, even when pressure fields are interpolated to a common grid. This implies that the additional strengthening of the simulated tropical cyclone (TC) at higher resolution is not attributable to sampling, but is due to changes in the representation of physical processes important to TC intensity. The most apparent changes in simulated TC structure with resolution occur near a grid length of 4 km. At 4-km grid spacing and below, polygonal eyewall segments appear, suggestive of breaking vortex Rossby waves. With sub-4-km grid lengths, localized, intense updraft cores within the eyewall are numerous and both polygonal and circular eyewall shapes appear regularly. Higher-resolution simulations produce a greater variety of shapes, transitioning more frequently between polygonal and circular eyewalls relative to lower-resolution simulations. It is hypothesized that this is because of the ability to resolve a greater range of wavenumbers in high-resolution simulations. Also, as resolution is increased, a broader range of updraft and downdraft velocities is present in the eyewall. These results suggest that grid spacing of 2 km or less is needed for representation of important physical processes in the TC eyewall. Grid-length and domain size suggestions for operational prediction are provided; for operational prediction, a grid length of 3 km or less is recommended.
    • Download: (5.763Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Simulated Tropical Cyclone Structure and Intensity to Horizontal Resolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211275
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGentry, Megan S.
    contributor authorLackmann, Gary M.
    date accessioned2017-06-09T16:32:14Z
    date available2017-06-09T16:32:14Z
    date copyright2010/03/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-69590.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211275
    description abstractThe Weather Research and Forecasting (WRF) model is used to test the sensitivity of simulations of Hurricane Ivan (2004) to changes in horizontal grid spacing for grid lengths from 8 to 1 km. As resolution is increased, minimum central pressure decreases significantly (by 30 hPa from 8- to 1-km grid spacing), although this increase in intensity is not uniform across similar reductions in grid spacing, even when pressure fields are interpolated to a common grid. This implies that the additional strengthening of the simulated tropical cyclone (TC) at higher resolution is not attributable to sampling, but is due to changes in the representation of physical processes important to TC intensity. The most apparent changes in simulated TC structure with resolution occur near a grid length of 4 km. At 4-km grid spacing and below, polygonal eyewall segments appear, suggestive of breaking vortex Rossby waves. With sub-4-km grid lengths, localized, intense updraft cores within the eyewall are numerous and both polygonal and circular eyewall shapes appear regularly. Higher-resolution simulations produce a greater variety of shapes, transitioning more frequently between polygonal and circular eyewalls relative to lower-resolution simulations. It is hypothesized that this is because of the ability to resolve a greater range of wavenumbers in high-resolution simulations. Also, as resolution is increased, a broader range of updraft and downdraft velocities is present in the eyewall. These results suggest that grid spacing of 2 km or less is needed for representation of important physical processes in the TC eyewall. Grid-length and domain size suggestions for operational prediction are provided; for operational prediction, a grid length of 3 km or less is recommended.
    publisherAmerican Meteorological Society
    titleSensitivity of Simulated Tropical Cyclone Structure and Intensity to Horizontal Resolution
    typeJournal Paper
    journal volume138
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR2976.1
    journal fristpage688
    journal lastpage704
    treeMonthly Weather Review:;2009:;volume( 138 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian