YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation

    Source: Monthly Weather Review:;2009:;volume( 137 ):;issue: 012::page 4386
    Author:
    Krause, Paul
    ,
    Restrepo, Juan M.
    DOI: 10.1175/2009MWR2889.1
    Publisher: American Meteorological Society
    Abstract: The diffusion kernel filter is a sequential particle-method approach to data assimilation of time series data and evolutionary models. The method is applicable to nonlinear/non-Gaussian problems. Within branches of prediction it parameterizes small fluctuations of Brownian-driven paths about deterministic paths. Its implementation is relatively straightforward, provided a tangent linear model is available. A by-product of the parameterization is a bound on the infinity norm of the covariance matrix of such fluctuations (divided by the grid model dimension). As such it can be used to define a notion of ?prediction? itself. It can also be used to assess the short time sensitivity of the deterministic history to Brownian noise or Gaussian initial perturbations. In pure oceanic Lagrangian data assimilation, the dynamics and the statistics are nonlinear and non-Gaussian, respectively. Both of these characteristics challenge conventional methods, such as the extended Kalman filter and the popular ensemble Kalman filter. The diffusion kernel filter is proposed as an alternative and is evaluated here on a problem that is often used as a test bed for Lagrangian data assimilation: it consists of tracking point vortices and passive drifters, using a dynamical model and data, both of which have known error statistics. It is found that the diffusion kernel filter captures the first few moments of the random dynamics, with a computational cost that is competitive with a particle filter estimation strategy. The authors also introduce a clustered version of the diffusion kernel filter (cDKF), which is shown to be significantly more efficient with regard to computational cost, at the expense of a slight degradation in the description of the statistics of the dynamical history. Upon parallelizing branches of prediction, cDKF can be computationally competitive with EKF.
    • Download: (2.434Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Diffusion Kernel Filter Applied to Lagrangian Data Assimilation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4211220
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKrause, Paul
    contributor authorRestrepo, Juan M.
    date accessioned2017-06-09T16:32:01Z
    date available2017-06-09T16:32:01Z
    date copyright2009/12/01
    date issued2009
    identifier issn0027-0644
    identifier otherams-69540.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4211220
    description abstractThe diffusion kernel filter is a sequential particle-method approach to data assimilation of time series data and evolutionary models. The method is applicable to nonlinear/non-Gaussian problems. Within branches of prediction it parameterizes small fluctuations of Brownian-driven paths about deterministic paths. Its implementation is relatively straightforward, provided a tangent linear model is available. A by-product of the parameterization is a bound on the infinity norm of the covariance matrix of such fluctuations (divided by the grid model dimension). As such it can be used to define a notion of ?prediction? itself. It can also be used to assess the short time sensitivity of the deterministic history to Brownian noise or Gaussian initial perturbations. In pure oceanic Lagrangian data assimilation, the dynamics and the statistics are nonlinear and non-Gaussian, respectively. Both of these characteristics challenge conventional methods, such as the extended Kalman filter and the popular ensemble Kalman filter. The diffusion kernel filter is proposed as an alternative and is evaluated here on a problem that is often used as a test bed for Lagrangian data assimilation: it consists of tracking point vortices and passive drifters, using a dynamical model and data, both of which have known error statistics. It is found that the diffusion kernel filter captures the first few moments of the random dynamics, with a computational cost that is competitive with a particle filter estimation strategy. The authors also introduce a clustered version of the diffusion kernel filter (cDKF), which is shown to be significantly more efficient with regard to computational cost, at the expense of a slight degradation in the description of the statistics of the dynamical history. Upon parallelizing branches of prediction, cDKF can be computationally competitive with EKF.
    publisherAmerican Meteorological Society
    titleThe Diffusion Kernel Filter Applied to Lagrangian Data Assimilation
    typeJournal Paper
    journal volume137
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/2009MWR2889.1
    journal fristpage4386
    journal lastpage4400
    treeMonthly Weather Review:;2009:;volume( 137 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian