YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Mining Storm Attributes from Spatial Grids

    Source: Journal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 011::page 2353
    Author:
    Lakshmanan, Valliappa
    ,
    Smith, Travis
    DOI: 10.1175/2009JTECHA1257.1
    Publisher: American Meteorological Society
    Abstract: A technique to identify storms and capture scalar features within the geographic and temporal extent of the identified storms is described. The identification technique relies on clustering grid points in an observation field to find self-similar and spatially coherent clusters that meet the traditional understanding of what storms are. From these storms, geometric, spatial, and temporal features can be extracted. These scalar features can then be data mined to answer many types of research questions in an objective, data-driven manner. This is illustrated by using the technique to answer questions of forecaster skill and lightning predictability.
    • Download: (1.101Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Mining Storm Attributes from Spatial Grids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210976
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLakshmanan, Valliappa
    contributor authorSmith, Travis
    date accessioned2017-06-09T16:31:15Z
    date available2017-06-09T16:31:15Z
    date copyright2009/11/01
    date issued2009
    identifier issn0739-0572
    identifier otherams-69320.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210976
    description abstractA technique to identify storms and capture scalar features within the geographic and temporal extent of the identified storms is described. The identification technique relies on clustering grid points in an observation field to find self-similar and spatially coherent clusters that meet the traditional understanding of what storms are. From these storms, geometric, spatial, and temporal features can be extracted. These scalar features can then be data mined to answer many types of research questions in an objective, data-driven manner. This is illustrated by using the technique to answer questions of forecaster skill and lightning predictability.
    publisherAmerican Meteorological Society
    titleData Mining Storm Attributes from Spatial Grids
    typeJournal Paper
    journal volume26
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2009JTECHA1257.1
    journal fristpage2353
    journal lastpage2365
    treeJournal of Atmospheric and Oceanic Technology:;2009:;volume( 026 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian