YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Spectral Evolution of Wind Waves. Part II: Dissipation Term and Evolution Tests

    Source: Journal of Physical Oceanography:;2009:;Volume( 040 ):;issue: 004::page 667
    Author:
    Babanin, Alexander V.
    ,
    Tsagareli, Kakha N.
    ,
    Young, I. R.
    ,
    Walker, David J.
    DOI: 10.1175/2009JPO4370.1
    Publisher: American Meteorological Society
    Abstract: Numerical simulations of the wind-wave spectrum evolution are conducted by means of new observation-based wind-input and wave dissipation functions obtained in the Lake George field experiment. This experiment allowed simultaneous measurements of the source functions in a broad range of conditions, including extreme wind-wave circumstances. Results of the experiment revealed new physical mechanisms in the processes of spectral input/dissipation of wave energy, which are presently not accounted for in wave forecast models. These features had been parameterized as source terms in a form suitable for spectral wave models; in the present study, they were tested, calibrated, and validated on the basis of such a model. Physical constraints were imposed on the source functions in terms of the known experimental dependences for the total wind-wave momentum flux and for the ratio between the total input and total dissipation. Enforcing the constraints in the course of wave-spectrum evolution allowed calibration of the free experimental parameters of the new input (Part I of the study) and dissipation functions; the latter is the topic of the present paper. The approach allows separate calibration of the source functions before they are employed in the evolution tests. The evolution simulations were conducted by means of the one-dimensional research WAVETIME model with an exact solution for the nonlinear term. The resulting time-limited evolution of integral, spectral, and directional wave properties, based on implementation of the new physically justified source/sink terms and constraints, is then analyzed. Good agreement of the simulated evolution with known experimental dependences is demonstrated.
    • Download: (1.962Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Spectral Evolution of Wind Waves. Part II: Dissipation Term and Evolution Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210914
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBabanin, Alexander V.
    contributor authorTsagareli, Kakha N.
    contributor authorYoung, I. R.
    contributor authorWalker, David J.
    date accessioned2017-06-09T16:31:04Z
    date available2017-06-09T16:31:04Z
    date copyright2010/04/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-69264.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210914
    description abstractNumerical simulations of the wind-wave spectrum evolution are conducted by means of new observation-based wind-input and wave dissipation functions obtained in the Lake George field experiment. This experiment allowed simultaneous measurements of the source functions in a broad range of conditions, including extreme wind-wave circumstances. Results of the experiment revealed new physical mechanisms in the processes of spectral input/dissipation of wave energy, which are presently not accounted for in wave forecast models. These features had been parameterized as source terms in a form suitable for spectral wave models; in the present study, they were tested, calibrated, and validated on the basis of such a model. Physical constraints were imposed on the source functions in terms of the known experimental dependences for the total wind-wave momentum flux and for the ratio between the total input and total dissipation. Enforcing the constraints in the course of wave-spectrum evolution allowed calibration of the free experimental parameters of the new input (Part I of the study) and dissipation functions; the latter is the topic of the present paper. The approach allows separate calibration of the source functions before they are employed in the evolution tests. The evolution simulations were conducted by means of the one-dimensional research WAVETIME model with an exact solution for the nonlinear term. The resulting time-limited evolution of integral, spectral, and directional wave properties, based on implementation of the new physically justified source/sink terms and constraints, is then analyzed. Good agreement of the simulated evolution with known experimental dependences is demonstrated.
    publisherAmerican Meteorological Society
    titleNumerical Investigation of Spectral Evolution of Wind Waves. Part II: Dissipation Term and Evolution Tests
    typeJournal Paper
    journal volume40
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2009JPO4370.1
    journal fristpage667
    journal lastpage683
    treeJournal of Physical Oceanography:;2009:;Volume( 040 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian