Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part I: Observation of Transverse StructureSource: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 010::page 2385DOI: 10.1175/2009JPO4159.1Publisher: American Meteorological Society
Abstract: A detailed dataset describing a quasi-stationary bottom gravity current, approximately 10 m thick and 10 km wide, passing through a channel-like constriction in the western Baltic Sea is presented. The data include full-depth, synoptic, and highly resolved transects of stratification and turbulence parameters, as well as detailed velocity transects across the gravity current at different down-channel locations. The velocity data reveal a persistent transverse circulation, creating a characteristic wedge-shaped density structure in the interface. A strong asymmetry was also found in the interior of the gravity current, where the evolution of a dynamically significant transverse density gradient to the right of the down-channel flow was observed. Spectral analysis of the near-bottom velocities showed a surprisingly strong contribution to the bottom stress from low-frequency motions with periods up to 30 min that are possibly related to internal wave effects. Cross-channel transects of shear microstructure were used to investigate the transverse variation of local entrainment rates and bottom stresses. These data indicate that frictional control is essential for this class of gravity currents that are characterized by subcritical Froude numbers, small entrainment, strong rotational effects, and small thickness compared to the bottom Ekman layer.
|
Collections
Show full item record
contributor author | Umlauf, Lars | |
contributor author | Arneborg, Lars | |
date accessioned | 2017-06-09T16:30:42Z | |
date available | 2017-06-09T16:30:42Z | |
date copyright | 2009/10/01 | |
date issued | 2009 | |
identifier issn | 0022-3670 | |
identifier other | ams-69182.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4210823 | |
description abstract | A detailed dataset describing a quasi-stationary bottom gravity current, approximately 10 m thick and 10 km wide, passing through a channel-like constriction in the western Baltic Sea is presented. The data include full-depth, synoptic, and highly resolved transects of stratification and turbulence parameters, as well as detailed velocity transects across the gravity current at different down-channel locations. The velocity data reveal a persistent transverse circulation, creating a characteristic wedge-shaped density structure in the interface. A strong asymmetry was also found in the interior of the gravity current, where the evolution of a dynamically significant transverse density gradient to the right of the down-channel flow was observed. Spectral analysis of the near-bottom velocities showed a surprisingly strong contribution to the bottom stress from low-frequency motions with periods up to 30 min that are possibly related to internal wave effects. Cross-channel transects of shear microstructure were used to investigate the transverse variation of local entrainment rates and bottom stresses. These data indicate that frictional control is essential for this class of gravity currents that are characterized by subcritical Froude numbers, small entrainment, strong rotational effects, and small thickness compared to the bottom Ekman layer. | |
publisher | American Meteorological Society | |
title | Dynamics of Rotating Shallow Gravity Currents Passing through a Channel. Part I: Observation of Transverse Structure | |
type | Journal Paper | |
journal volume | 39 | |
journal issue | 10 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/2009JPO4159.1 | |
journal fristpage | 2385 | |
journal lastpage | 2401 | |
tree | Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 010 | |
contenttype | Fulltext |