YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Midlatitude Baroclinic Rossby Waves in a High-Resolution OGCM Simulation

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009::page 2264
    Author:
    Aoki, Kunihiro
    ,
    Kubokawa, Atsushi
    ,
    Sasaki, Hideharu
    ,
    Sasai, Yoshikazu
    DOI: 10.1175/2009JPO4137.1
    Publisher: American Meteorological Society
    Abstract: The effects of background baroclinic zonal flow and bottom pressure decoupling on midlatitude oceanic Rossby wave dynamics using a high-resolution OGCM simulation are investigated. To examine these effects, the phase speed and vertical structure of the simulated wave are compared with each of the different linear Rossby wave solutions obtained for two different circumstances (with or without background flow) and two different boundary conditions (a flat bottom or a bottom pressure decoupling condition). First, a frequency?wavenumber spectrum is examined for depth anomaly of the permanent thermocline (27.0σ? surface) along 32°S. Most of the energy is distributed along the theoretical dispersion curve including the effects of background flow and bottom pressure decoupling. The authors focus on a secondary dominant peak (appearing at a frequency greater than 1 cycle per year) at which the differences between the dispersion curves are large enough to discuss the relation between the spectral peak and the dispersion curves. The phase speed of this peak is nearly 1.5 times larger than that of the standard long-wave theory (flat bottom and no background flow), which is similar to results from previous observational studies. The extended long-wave theory including background flow and bottom pressure decoupling effects overestimates the phase speed. However, taking into account finite wavelength effects, this theory provides a phase speed much closer to that of the secondary dominant peak. The vertical structure corresponding to the wave of the secondary dominant peak extracted by composite analysis is intensified in the surface layer, a result similar to that from the theory including background flow and bottom pressure decoupling effects. The authors also compare the latitudinal distribution of midlatitude phase speed estimated by the frequency?wavenumber spectrum with theoretical results. The theory including background flow, bottom pressure decoupling, and finite wavelength effects reproduces the latitudinal distribution well, suggesting that these effects are important for explaining Rossby wave speed. The dominant factor enhancing the phase speed is bottom pressure decoupling related to rough bottom topography, while north of 30°N the background flow makes a strong contribution to the phase speed enhancement.
    • Download: (5.962Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Midlatitude Baroclinic Rossby Waves in a High-Resolution OGCM Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210807
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorAoki, Kunihiro
    contributor authorKubokawa, Atsushi
    contributor authorSasaki, Hideharu
    contributor authorSasai, Yoshikazu
    date accessioned2017-06-09T16:30:39Z
    date available2017-06-09T16:30:39Z
    date copyright2009/09/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-69168.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210807
    description abstractThe effects of background baroclinic zonal flow and bottom pressure decoupling on midlatitude oceanic Rossby wave dynamics using a high-resolution OGCM simulation are investigated. To examine these effects, the phase speed and vertical structure of the simulated wave are compared with each of the different linear Rossby wave solutions obtained for two different circumstances (with or without background flow) and two different boundary conditions (a flat bottom or a bottom pressure decoupling condition). First, a frequency?wavenumber spectrum is examined for depth anomaly of the permanent thermocline (27.0σ? surface) along 32°S. Most of the energy is distributed along the theoretical dispersion curve including the effects of background flow and bottom pressure decoupling. The authors focus on a secondary dominant peak (appearing at a frequency greater than 1 cycle per year) at which the differences between the dispersion curves are large enough to discuss the relation between the spectral peak and the dispersion curves. The phase speed of this peak is nearly 1.5 times larger than that of the standard long-wave theory (flat bottom and no background flow), which is similar to results from previous observational studies. The extended long-wave theory including background flow and bottom pressure decoupling effects overestimates the phase speed. However, taking into account finite wavelength effects, this theory provides a phase speed much closer to that of the secondary dominant peak. The vertical structure corresponding to the wave of the secondary dominant peak extracted by composite analysis is intensified in the surface layer, a result similar to that from the theory including background flow and bottom pressure decoupling effects. The authors also compare the latitudinal distribution of midlatitude phase speed estimated by the frequency?wavenumber spectrum with theoretical results. The theory including background flow, bottom pressure decoupling, and finite wavelength effects reproduces the latitudinal distribution well, suggesting that these effects are important for explaining Rossby wave speed. The dominant factor enhancing the phase speed is bottom pressure decoupling related to rough bottom topography, while north of 30°N the background flow makes a strong contribution to the phase speed enhancement.
    publisherAmerican Meteorological Society
    titleMidlatitude Baroclinic Rossby Waves in a High-Resolution OGCM Simulation
    typeJournal Paper
    journal volume39
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2009JPO4137.1
    journal fristpage2264
    journal lastpage2279
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian