YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Amplification of a Surface-Intensified Eddy Drift along a Steep Shelf in the Eastern Mediterranean Sea

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 007::page 1729
    Author:
    Sutyrin, Georgi
    ,
    Stegner, Alexander
    ,
    Taupier-Letage, Isabelle
    ,
    Teinturier, Samuel
    DOI: 10.1175/2009JPO4106.1
    Publisher: American Meteorological Society
    Abstract: The datasets of the Eddies and Gyre Path Tracking (EGYPT)/EGITTO program in the eastern Mediterranean Sea reveal a large mesoscale anticyclone traveling along the Libyan shelf. Surface drifter trajectories combined with a CTD transect accurately quantify the horizontal velocity and the vertical structure of this surface-intensified anticyclone. The observed westward drift speed is significantly higher than expected from the beta effect alone. To study the impact of a steep shelf topography on the propagation of compact surface-intensified vortices, the authors used a two-layer beta-plane model with steep continental slope and nearly zonal boundary. A perturbation theory derived by G. Sutyrin for a circular vortex in the upper layer with the lower layer at rest as a basic state is generalized for nonuniform slope in the presence of the image effect. An integral momentum balance is used to derive the drifting velocity of an upper-layer vortex with the main assumption that a stable and steady drifting solution of the two-layer system exists. The interface is described by a steady drifting circular dome at the leading order. This approach allows the problem to be reduced to the calculation of the deep-flow pattern, depending on the interface shape and topography. When the topographic slope beneath the eddy changes rapidly from a steep continental slope to a gentle continental rise, most of the deep-flow pattern is shifted offshore. The corresponding anticyclonic deep-flow feedback provides an additional along-slope propagation, which is proportional to the basic drift speed and the steepness parameter.
    • Download: (1.243Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Amplification of a Surface-Intensified Eddy Drift along a Steep Shelf in the Eastern Mediterranean Sea

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210787
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSutyrin, Georgi
    contributor authorStegner, Alexander
    contributor authorTaupier-Letage, Isabelle
    contributor authorTeinturier, Samuel
    date accessioned2017-06-09T16:30:36Z
    date available2017-06-09T16:30:36Z
    date copyright2009/07/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-69150.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210787
    description abstractThe datasets of the Eddies and Gyre Path Tracking (EGYPT)/EGITTO program in the eastern Mediterranean Sea reveal a large mesoscale anticyclone traveling along the Libyan shelf. Surface drifter trajectories combined with a CTD transect accurately quantify the horizontal velocity and the vertical structure of this surface-intensified anticyclone. The observed westward drift speed is significantly higher than expected from the beta effect alone. To study the impact of a steep shelf topography on the propagation of compact surface-intensified vortices, the authors used a two-layer beta-plane model with steep continental slope and nearly zonal boundary. A perturbation theory derived by G. Sutyrin for a circular vortex in the upper layer with the lower layer at rest as a basic state is generalized for nonuniform slope in the presence of the image effect. An integral momentum balance is used to derive the drifting velocity of an upper-layer vortex with the main assumption that a stable and steady drifting solution of the two-layer system exists. The interface is described by a steady drifting circular dome at the leading order. This approach allows the problem to be reduced to the calculation of the deep-flow pattern, depending on the interface shape and topography. When the topographic slope beneath the eddy changes rapidly from a steep continental slope to a gentle continental rise, most of the deep-flow pattern is shifted offshore. The corresponding anticyclonic deep-flow feedback provides an additional along-slope propagation, which is proportional to the basic drift speed and the steepness parameter.
    publisherAmerican Meteorological Society
    titleAmplification of a Surface-Intensified Eddy Drift along a Steep Shelf in the Eastern Mediterranean Sea
    typeJournal Paper
    journal volume39
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2009JPO4106.1
    journal fristpage1729
    journal lastpage1741
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian