On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific OceanSource: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009::page 2052DOI: 10.1175/2009JPO4097.1Publisher: American Meteorological Society
Abstract: Previous analyses of the Community Climate System Model, version 3 (CCSM3) standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate physical mechanism underlying this Pacific multidecadal variability (PMV). To better isolate the mechanism that selects the long multidecadal time scale for the PMV, a few specifically designed sensitivity experiments are carried out. When the propagating Rossby waves are blocked in the subtropics from the midbasin, the PMV remains outstanding. In contrast, when the Rossby waves are blocked beyond the subtropics across the entire North Pacific, the PMV is virtually suppressed. It suggests that the PMV relies on propagating Rossby waves in the subpolar Pacific, whereas those in the subtropics are not critical. A novel mechanism of PMV is advanced based on a more comprehensive analysis, which is characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal ocean temperature and salinity anomalies may originate from the subsurface of the subpolar North Pacific because of the wave adjustment to the preceding basin-scale wind curl forcing. The anomalies then ascend to the surface and are amplified through local temperature?salinity convective feedback. Along the southward Oyashio, these anomalies travel to the Kuroshio Extension (KOE) region and are further intensified through a similar convective feedback. The oceanic temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing a wind curl anomaly over the subpolar North Pacific, which in turn generates anomalous oceanic circulation and causes temperature and salinity variability in the subpolar subsurface. Thereby, a closed loop of PMV is established in the form of an extratropical delayed oscillator. The phase transition of PMV is driven by the delayed negative feedback that resides in the wave adjustment of the subpolar North Pacific via propagating Rossby waves, whereas the convective positive feedback provides the growth mechanism. A significant role of salinity variability is unveiled in both the delayed negative feedback and convective positive feedback.
|
Collections
Show full item record
contributor author | Zhong, Yafang | |
contributor author | Liu, Zhengyu | |
date accessioned | 2017-06-09T16:30:35Z | |
date available | 2017-06-09T16:30:35Z | |
date copyright | 2009/09/01 | |
date issued | 2009 | |
identifier issn | 0022-3670 | |
identifier other | ams-69145.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4210782 | |
description abstract | Previous analyses of the Community Climate System Model, version 3 (CCSM3) standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate physical mechanism underlying this Pacific multidecadal variability (PMV). To better isolate the mechanism that selects the long multidecadal time scale for the PMV, a few specifically designed sensitivity experiments are carried out. When the propagating Rossby waves are blocked in the subtropics from the midbasin, the PMV remains outstanding. In contrast, when the Rossby waves are blocked beyond the subtropics across the entire North Pacific, the PMV is virtually suppressed. It suggests that the PMV relies on propagating Rossby waves in the subpolar Pacific, whereas those in the subtropics are not critical. A novel mechanism of PMV is advanced based on a more comprehensive analysis, which is characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal ocean temperature and salinity anomalies may originate from the subsurface of the subpolar North Pacific because of the wave adjustment to the preceding basin-scale wind curl forcing. The anomalies then ascend to the surface and are amplified through local temperature?salinity convective feedback. Along the southward Oyashio, these anomalies travel to the Kuroshio Extension (KOE) region and are further intensified through a similar convective feedback. The oceanic temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing a wind curl anomaly over the subpolar North Pacific, which in turn generates anomalous oceanic circulation and causes temperature and salinity variability in the subpolar subsurface. Thereby, a closed loop of PMV is established in the form of an extratropical delayed oscillator. The phase transition of PMV is driven by the delayed negative feedback that resides in the wave adjustment of the subpolar North Pacific via propagating Rossby waves, whereas the convective positive feedback provides the growth mechanism. A significant role of salinity variability is unveiled in both the delayed negative feedback and convective positive feedback. | |
publisher | American Meteorological Society | |
title | On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean | |
type | Journal Paper | |
journal volume | 39 | |
journal issue | 9 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/2009JPO4097.1 | |
journal fristpage | 2052 | |
journal lastpage | 2076 | |
tree | Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009 | |
contenttype | Fulltext |