YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean

    Source: Journal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009::page 2052
    Author:
    Zhong, Yafang
    ,
    Liu, Zhengyu
    DOI: 10.1175/2009JPO4097.1
    Publisher: American Meteorological Society
    Abstract: Previous analyses of the Community Climate System Model, version 3 (CCSM3) standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate physical mechanism underlying this Pacific multidecadal variability (PMV). To better isolate the mechanism that selects the long multidecadal time scale for the PMV, a few specifically designed sensitivity experiments are carried out. When the propagating Rossby waves are blocked in the subtropics from the midbasin, the PMV remains outstanding. In contrast, when the Rossby waves are blocked beyond the subtropics across the entire North Pacific, the PMV is virtually suppressed. It suggests that the PMV relies on propagating Rossby waves in the subpolar Pacific, whereas those in the subtropics are not critical. A novel mechanism of PMV is advanced based on a more comprehensive analysis, which is characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal ocean temperature and salinity anomalies may originate from the subsurface of the subpolar North Pacific because of the wave adjustment to the preceding basin-scale wind curl forcing. The anomalies then ascend to the surface and are amplified through local temperature?salinity convective feedback. Along the southward Oyashio, these anomalies travel to the Kuroshio Extension (KOE) region and are further intensified through a similar convective feedback. The oceanic temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing a wind curl anomaly over the subpolar North Pacific, which in turn generates anomalous oceanic circulation and causes temperature and salinity variability in the subpolar subsurface. Thereby, a closed loop of PMV is established in the form of an extratropical delayed oscillator. The phase transition of PMV is driven by the delayed negative feedback that resides in the wave adjustment of the subpolar North Pacific via propagating Rossby waves, whereas the convective positive feedback provides the growth mechanism. A significant role of salinity variability is unveiled in both the delayed negative feedback and convective positive feedback.
    • Download: (5.974Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210782
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZhong, Yafang
    contributor authorLiu, Zhengyu
    date accessioned2017-06-09T16:30:35Z
    date available2017-06-09T16:30:35Z
    date copyright2009/09/01
    date issued2009
    identifier issn0022-3670
    identifier otherams-69145.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210782
    description abstractPrevious analyses of the Community Climate System Model, version 3 (CCSM3) standard integration have revealed pronounced multidecadal variability in the Pacific climate system. The purpose of the present work is to investigate physical mechanism underlying this Pacific multidecadal variability (PMV). To better isolate the mechanism that selects the long multidecadal time scale for the PMV, a few specifically designed sensitivity experiments are carried out. When the propagating Rossby waves are blocked in the subtropics from the midbasin, the PMV remains outstanding. In contrast, when the Rossby waves are blocked beyond the subtropics across the entire North Pacific, the PMV is virtually suppressed. It suggests that the PMV relies on propagating Rossby waves in the subpolar Pacific, whereas those in the subtropics are not critical. A novel mechanism of PMV is advanced based on a more comprehensive analysis, which is characterized by a crucial role of the subpolar North Pacific Ocean. The multidecadal ocean temperature and salinity anomalies may originate from the subsurface of the subpolar North Pacific because of the wave adjustment to the preceding basin-scale wind curl forcing. The anomalies then ascend to the surface and are amplified through local temperature?salinity convective feedback. Along the southward Oyashio, these anomalies travel to the Kuroshio Extension (KOE) region and are further intensified through a similar convective feedback. The oceanic temperature anomaly in the KOE is able to feed back to the large-scale atmospheric circulation, inducing a wind curl anomaly over the subpolar North Pacific, which in turn generates anomalous oceanic circulation and causes temperature and salinity variability in the subpolar subsurface. Thereby, a closed loop of PMV is established in the form of an extratropical delayed oscillator. The phase transition of PMV is driven by the delayed negative feedback that resides in the wave adjustment of the subpolar North Pacific via propagating Rossby waves, whereas the convective positive feedback provides the growth mechanism. A significant role of salinity variability is unveiled in both the delayed negative feedback and convective positive feedback.
    publisherAmerican Meteorological Society
    titleOn the Mechanism of Pacific Multidecadal Climate Variability in CCSM3: The Role of the Subpolar North Pacific Ocean
    typeJournal Paper
    journal volume39
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2009JPO4097.1
    journal fristpage2052
    journal lastpage2076
    treeJournal of Physical Oceanography:;2009:;Volume( 039 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian