YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Precipitation Generation Based on a Multivariate Autoregression Model

    Source: Journal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 006::page 1397
    Author:
    Makhnin, Oleg V.
    ,
    McAllister, Devon L.
    DOI: 10.1175/2009JHM1103.1
    Publisher: American Meteorological Society
    Abstract: The problem of stochastic precipitation generation has long been of interest. A good generator should produce time series with statistical properties to match those of the real precipitation. Here, a multivariate autoregression model designed to capture the covariance and lag-1 cross-covariance structure of the precipitation measurements is presented. A truncated and power-transformed normal distribution is used to simultaneously model both occurrences and amounts of daily precipitation. The methodology is illustrated using daily rain gauge datasets for three areas in the continental United States.
    • Download: (6.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Precipitation Generation Based on a Multivariate Autoregression Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210654
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMakhnin, Oleg V.
    contributor authorMcAllister, Devon L.
    date accessioned2017-06-09T16:30:11Z
    date available2017-06-09T16:30:11Z
    date copyright2009/12/01
    date issued2009
    identifier issn1525-755X
    identifier otherams-69030.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210654
    description abstractThe problem of stochastic precipitation generation has long been of interest. A good generator should produce time series with statistical properties to match those of the real precipitation. Here, a multivariate autoregression model designed to capture the covariance and lag-1 cross-covariance structure of the precipitation measurements is presented. A truncated and power-transformed normal distribution is used to simultaneously model both occurrences and amounts of daily precipitation. The methodology is illustrated using daily rain gauge datasets for three areas in the continental United States.
    publisherAmerican Meteorological Society
    titleStochastic Precipitation Generation Based on a Multivariate Autoregression Model
    typeJournal Paper
    journal volume10
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2009JHM1103.1
    journal fristpage1397
    journal lastpage1413
    treeJournal of Hydrometeorology:;2009:;Volume( 010 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian