YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans

    Source: Journal of Climate:;2010:;volume( 023 ):;issue: 002::page 440
    Author:
    Trenberth, Kevin E.
    ,
    Fasullo, John T.
    DOI: 10.1175/2009JCLI3152.1
    Publisher: American Meteorological Society
    Abstract: The energy budget of the modern-day Southern Hemisphere is poorly simulated in both state-of-the-art reanalyses and coupled global climate models. The ocean-dominated Southern Hemisphere has low surface reflectivity and therefore its albedo is particularly sensitive to cloud cover. In modern-day climates, mainly because of systematic deficiencies in cloud and albedo at mid- and high latitudes, too much solar radiation enters the ocean. Along with too little radiation absorbed at lower latitudes because of clouds that are too bright, unrealistically weak poleward transports of energy by both the ocean and atmosphere are generally simulated in the Southern Hemisphere. This implies too little baroclinic eddy development and deficient activity in storm tracks. However, projections into the future by coupled climate models indicate that the Southern Ocean features a robust and unique increase in albedo, related to clouds, in association with an intensification and poleward shift in storm tracks that is not observed at any other latitude. Such an increase in cloud may be untenable in nature, as it is likely precluded by the present-day ubiquitous cloud cover that models fail to capture. There is also a remarkably strong relationship between the projected changes in clouds and the simulated current-day cloud errors. The model equilibrium climate sensitivity is also significantly negatively correlated with the Southern Hemisphere energy errors, and only the more sensitive models are in the range of observations. As a result, questions loom large about how the Southern Hemisphere will actually change as global warming progresses, and a better simulation of the modern-day climate is an essential first step.
    • Download: (8.250Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210540
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTrenberth, Kevin E.
    contributor authorFasullo, John T.
    date accessioned2017-06-09T16:29:52Z
    date available2017-06-09T16:29:52Z
    date copyright2010/01/01
    date issued2010
    identifier issn0894-8755
    identifier otherams-68928.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210540
    description abstractThe energy budget of the modern-day Southern Hemisphere is poorly simulated in both state-of-the-art reanalyses and coupled global climate models. The ocean-dominated Southern Hemisphere has low surface reflectivity and therefore its albedo is particularly sensitive to cloud cover. In modern-day climates, mainly because of systematic deficiencies in cloud and albedo at mid- and high latitudes, too much solar radiation enters the ocean. Along with too little radiation absorbed at lower latitudes because of clouds that are too bright, unrealistically weak poleward transports of energy by both the ocean and atmosphere are generally simulated in the Southern Hemisphere. This implies too little baroclinic eddy development and deficient activity in storm tracks. However, projections into the future by coupled climate models indicate that the Southern Ocean features a robust and unique increase in albedo, related to clouds, in association with an intensification and poleward shift in storm tracks that is not observed at any other latitude. Such an increase in cloud may be untenable in nature, as it is likely precluded by the present-day ubiquitous cloud cover that models fail to capture. There is also a remarkably strong relationship between the projected changes in clouds and the simulated current-day cloud errors. The model equilibrium climate sensitivity is also significantly negatively correlated with the Southern Hemisphere energy errors, and only the more sensitive models are in the range of observations. As a result, questions loom large about how the Southern Hemisphere will actually change as global warming progresses, and a better simulation of the modern-day climate is an essential first step.
    publisherAmerican Meteorological Society
    titleSimulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans
    typeJournal Paper
    journal volume23
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI3152.1
    journal fristpage440
    journal lastpage454
    treeJournal of Climate:;2010:;volume( 023 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian