Changes in Streamflow Dynamics in the Rhine Basin under Three High-Resolution Regional Climate ScenariosSource: Journal of Climate:;2010:;volume( 023 ):;issue: 003::page 679Author:Hurkmans, Ruud
,
Terink, Wilco
,
Uijlenhoet, Remko
,
Torfs, Paul
,
Jacob, Daniela
,
Troch, Peter A.
DOI: 10.1175/2009JCLI3066.1Publisher: American Meteorological Society
Abstract: Because of global warming, the hydrologic behavior of the Rhine basin is expected to shift from a combined snowmelt- and rainfall-driven regime to a more rainfall-dominated regime. Previous impact assessments have indicated that this leads, on average, to increasing streamflow by ?30% in winter and spring and decreasing streamflow by a similar value in summer. In this study, high-resolution (0.088°) regional climate scenarios conducted with the regional climate model REMO (REgional MOdel) for the Rhine basin are used to force a macroscale hydrological model. These climate scenarios are based on model output from the ECHAM5?Max Planck Institute Ocean Model (MPI-OM) global climate model, which is in turn forced by three Special Report on Emissions Scenarios (SRES) emission scenarios: A2, A1B, and B1. The Variable Infiltration Capacity model (VIC; version 4.0.5) is used to examine changes in streamflow at various locations throughout the Rhine basin. Average streamflow, peak flows, low flows, and several water balance terms are evaluated for both the first and second half of the twenty-first century. The results reveal a distinct contrast between those periods. The first half is dominated by increased precipitation, causing increased streamflow throughout the year. During the second half of the century, a streamflow increase in winter/spring and a decrease in summer is found, similar to previous studies. This is caused by 1) temperature and evapotranspiration, which are considerably higher during the second half of the century; 2) decreased precipitation in summer; and 3) an earlier start of the snowmelt season. Magnitudes of peak flows increase during both periods, and the magnitudes of streamflow droughts increase only during the second half of the century.
|
Collections
Show full item record
contributor author | Hurkmans, Ruud | |
contributor author | Terink, Wilco | |
contributor author | Uijlenhoet, Remko | |
contributor author | Torfs, Paul | |
contributor author | Jacob, Daniela | |
contributor author | Troch, Peter A. | |
date accessioned | 2017-06-09T16:29:41Z | |
date available | 2017-06-09T16:29:41Z | |
date copyright | 2010/02/01 | |
date issued | 2010 | |
identifier issn | 0894-8755 | |
identifier other | ams-68883.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4210490 | |
description abstract | Because of global warming, the hydrologic behavior of the Rhine basin is expected to shift from a combined snowmelt- and rainfall-driven regime to a more rainfall-dominated regime. Previous impact assessments have indicated that this leads, on average, to increasing streamflow by ?30% in winter and spring and decreasing streamflow by a similar value in summer. In this study, high-resolution (0.088°) regional climate scenarios conducted with the regional climate model REMO (REgional MOdel) for the Rhine basin are used to force a macroscale hydrological model. These climate scenarios are based on model output from the ECHAM5?Max Planck Institute Ocean Model (MPI-OM) global climate model, which is in turn forced by three Special Report on Emissions Scenarios (SRES) emission scenarios: A2, A1B, and B1. The Variable Infiltration Capacity model (VIC; version 4.0.5) is used to examine changes in streamflow at various locations throughout the Rhine basin. Average streamflow, peak flows, low flows, and several water balance terms are evaluated for both the first and second half of the twenty-first century. The results reveal a distinct contrast between those periods. The first half is dominated by increased precipitation, causing increased streamflow throughout the year. During the second half of the century, a streamflow increase in winter/spring and a decrease in summer is found, similar to previous studies. This is caused by 1) temperature and evapotranspiration, which are considerably higher during the second half of the century; 2) decreased precipitation in summer; and 3) an earlier start of the snowmelt season. Magnitudes of peak flows increase during both periods, and the magnitudes of streamflow droughts increase only during the second half of the century. | |
publisher | American Meteorological Society | |
title | Changes in Streamflow Dynamics in the Rhine Basin under Three High-Resolution Regional Climate Scenarios | |
type | Journal Paper | |
journal volume | 23 | |
journal issue | 3 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/2009JCLI3066.1 | |
journal fristpage | 679 | |
journal lastpage | 699 | |
tree | Journal of Climate:;2010:;volume( 023 ):;issue: 003 | |
contenttype | Fulltext |