YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of the Free Tropospheric Humidity Interannual Variability Using Meteosat Data and an Advection–Condensation Transport Model

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 024::page 6773
    Author:
    Brogniez, Hélène
    ,
    Roca, Rémy
    ,
    Picon, Laurence
    DOI: 10.1175/2009JCLI2963.1
    Publisher: American Meteorological Society
    Abstract: Water vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.
    • Download: (1.778Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of the Free Tropospheric Humidity Interannual Variability Using Meteosat Data and an Advection–Condensation Transport Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210424
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBrogniez, Hélène
    contributor authorRoca, Rémy
    contributor authorPicon, Laurence
    date accessioned2017-06-09T16:29:30Z
    date available2017-06-09T16:29:30Z
    date copyright2009/12/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-68823.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210424
    description abstractWater vapor in the midtroposphere is an important element for the earth radiation budget. Despite its importance, the relative humidity in the free troposphere is not very well documented, mainly because of the difficulties associated with its measurements. A new long-term archive of free tropospheric humidity (FTH) derived from the water vapor channel of the Meteosat satellite from 1983 to 2005 is introduced. Special attention is dedicated to the long-term homogeneity and the definition of the retrieval layer. It is shown to complement the existing databases and is used to establish the climatology of FTH. Interannual variability is then evaluated for each season by using a normalized interannual standard deviation. This normalization approach reveals the importance of the relative variability of the dry areas to the moist regions. In consequence, emphasis is on the driest area of the region. Focusing on composites of the moist and dry seasons of the time series, the authors demonstrate that the 500-hPa relative humidity field, reconstructed using an idealized Lagrangian model, is a good proxy for the FTH variability there. The analysis of the origin of the air mass, using the back trajectory model, points out that lateral mixing between the deep tropics and extratropical latitudes takes place over this area, as advocated in previous theoretical studies. Systematic estimation of this large-scale mixing shows that, indeed, a significant part of the interannual variability of the free tropospheric humidity in this subtropical region stems from the amount of mixing of air originating from the deep tropics versus extratropical latitudes. The importance of this mechanism in the general understanding of the FTH distribution and variability is then discussed.
    publisherAmerican Meteorological Society
    titleA Study of the Free Tropospheric Humidity Interannual Variability Using Meteosat Data and an Advection–Condensation Transport Model
    typeJournal Paper
    journal volume22
    journal issue24
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI2963.1
    journal fristpage6773
    journal lastpage6787
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian