YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Joint Estimate of the Precipitation Climate Signal in Europe Using Eight Regional Models and Five Observational Datasets

    Source: Journal of Climate:;2009:;volume( 023 ):;issue: 007::page 1719
    Author:
    Tapiador, Francisco J.
    DOI: 10.1175/2009JCLI2956.1
    Publisher: American Meteorological Society
    Abstract: This paper presents an analysis of the precipitation climate signal in Europe emerging from a simulation of heterogeneous regional climate models (RCMs) using five observational datasets as the reference for present day climate conditions. Current climate simulations, as well as those from the A2 family of scenarios from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2), from eight RCMs involved in the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE) project have been cross-compared with data from the Climate Research Unit (CRU), the Global Precipitation Climatology Project (GPCP), the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the CPC Merged Analysis of Precipitation (CMAP) databases for Europe. The RCMs used are HIRHAM, the Climate High Resolution Model (CHRM), the Rossby Centre Atmosphere?Ocean (RCAO) model, the GKSS Climate Version of the Local Model (CLM), the Hadley Center RCM (HadRM3H), the Atmospheric Hydrostatic Regional Model (REMO), the Prognostic Model at the Mesoscale (PROMES), and the regional coupled ocean?atmosphere?ice model (RACMO). The comparison shows that the climate signal has to be interpreted depending on the reference data used. Although each validation dataset has its own relative merits and shortcomings, it is known that all of the datasets present variable uncertainties and error sources, which impedes consideration of a single dataset as the only valid representation of actual precipitation. Hence, it is suggested that a robust joint estimate of changes in future precipitation might include the uncertainties of both the RCMs and those of the observational datasets. After accounting for the difference between observed and simulated precipitation in the present climate, the analysis of such joint estimates reveals significant agreement in the climate signal for most of Europe. This lends confidence to the idea that the RCMs are able to correctly simulate future changes in precipitation.
    • Download: (17.16Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Joint Estimate of the Precipitation Climate Signal in Europe Using Eight Regional Models and Five Observational Datasets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210420
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTapiador, Francisco J.
    date accessioned2017-06-09T16:29:29Z
    date available2017-06-09T16:29:29Z
    date copyright2010/04/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-68820.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210420
    description abstractThis paper presents an analysis of the precipitation climate signal in Europe emerging from a simulation of heterogeneous regional climate models (RCMs) using five observational datasets as the reference for present day climate conditions. Current climate simulations, as well as those from the A2 family of scenarios from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2), from eight RCMs involved in the Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects (PRUDENCE) project have been cross-compared with data from the Climate Research Unit (CRU), the Global Precipitation Climatology Project (GPCP), the Global Precipitation Climatology Centre (GPCC), the Climate Prediction Center (CPC), and the CPC Merged Analysis of Precipitation (CMAP) databases for Europe. The RCMs used are HIRHAM, the Climate High Resolution Model (CHRM), the Rossby Centre Atmosphere?Ocean (RCAO) model, the GKSS Climate Version of the Local Model (CLM), the Hadley Center RCM (HadRM3H), the Atmospheric Hydrostatic Regional Model (REMO), the Prognostic Model at the Mesoscale (PROMES), and the regional coupled ocean?atmosphere?ice model (RACMO). The comparison shows that the climate signal has to be interpreted depending on the reference data used. Although each validation dataset has its own relative merits and shortcomings, it is known that all of the datasets present variable uncertainties and error sources, which impedes consideration of a single dataset as the only valid representation of actual precipitation. Hence, it is suggested that a robust joint estimate of changes in future precipitation might include the uncertainties of both the RCMs and those of the observational datasets. After accounting for the difference between observed and simulated precipitation in the present climate, the analysis of such joint estimates reveals significant agreement in the climate signal for most of Europe. This lends confidence to the idea that the RCMs are able to correctly simulate future changes in precipitation.
    publisherAmerican Meteorological Society
    titleA Joint Estimate of the Precipitation Climate Signal in Europe Using Eight Regional Models and Five Observational Datasets
    typeJournal Paper
    journal volume23
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI2956.1
    journal fristpage1719
    journal lastpage1738
    treeJournal of Climate:;2009:;volume( 023 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian