YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 019::page 5218
    Author:
    Mohr, Karen I.
    ,
    Molinari, John
    ,
    Thorncroft, Chris D.
    DOI: 10.1175/2009JCLI2940.1
    Publisher: American Meteorological Society
    Abstract: The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 km2. The study database consisted of convective systems in West Africa from May to September 1998?2007, and in the western Pacific from May to November 1998?2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
    • Download: (1.627Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210412
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMohr, Karen I.
    contributor authorMolinari, John
    contributor authorThorncroft, Chris D.
    date accessioned2017-06-09T16:29:27Z
    date available2017-06-09T16:29:27Z
    date copyright2009/10/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-68812.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210412
    description abstractThe characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 km2. The study database consisted of convective systems in West Africa from May to September 1998?2007, and in the western Pacific from May to November 1998?2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
    publisherAmerican Meteorological Society
    titleThe Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity
    typeJournal Paper
    journal volume22
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI2940.1
    journal fristpage5218
    journal lastpage5231
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian