YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implications of Both Statistical Equilibrium and Global Warming Simulations with CCSM3. Part II: On the Multidecadal Variability in the North Atlantic Basin

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 020::page 5298
    Author:
    d’Orgeville, Marc
    ,
    Peltier, W. Richard
    DOI: 10.1175/2009JCLI2775.1
    Publisher: American Meteorological Society
    Abstract: The nature of the multidecadal variability in the North Atlantic basin is investigated through detailed analysis of multicentury integrations performed using the low-resolution version of the Community Climate System Model, version 3 (CCSM3), a modern atmosphere?ocean coupled general circulation model. Specifically, the results of control simulations under both preindustrial and present-day perpetual seasonal cycle conditions are compared to each other and also to the results of five simulations with increasing CO2 concentration scenarios. In the absence of greenhouse gas?induced warming, the meridional overturning circulation (MOC) variability is shown to be dependent on the details of the simulation. In the present-day control simulation, the MOC is characterized by a broad spectrum of low frequencies, whereas, in preindustrial control simulations, MOC variability is characterized either by a well-defined periodicity of 60 yr or by a broad spectrum of low frequencies. In all the control simulations, the MOC appears to respond with a delay of 10 yr to synchronous temperature and salinity anomalies in the deep water formation sites located in the subpolar gyre, but salinity dominates the density anomalies. The explanation of the modeled MOC periodicity is therefore sought in the creation of these density anomalies. The influence of increased sea ice coverage under cold/preindustrial conditions is shown to modify the salinity variability, but it is not a sufficient condition for the support of the MOC periodicity. Instead, its source appears to be a modified subpolar gyre circulation resulting from interaction with the bottom bathymetry, which is able to sustain strong coupling between the horizontal and overturning circulations. Based on the global warming analyses, for the simulations initialized from the cold/preindustrial statistical equilibrium run, the North Atlantic variability continues to be dominated by strong coupling between the horizontal and overturning circulations if the imposed forcing is weak. More generally, the delayed response of the MOC to surface density anomalies in the deep water formation regions is preserved under weak forcing.
    • Download: (3.519Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implications of Both Statistical Equilibrium and Global Warming Simulations with CCSM3. Part II: On the Multidecadal Variability in the North Atlantic Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210305
    Collections
    • Journal of Climate

    Show full item record

    contributor authord’Orgeville, Marc
    contributor authorPeltier, W. Richard
    date accessioned2017-06-09T16:29:08Z
    date available2017-06-09T16:29:08Z
    date copyright2009/10/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-68716.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210305
    description abstractThe nature of the multidecadal variability in the North Atlantic basin is investigated through detailed analysis of multicentury integrations performed using the low-resolution version of the Community Climate System Model, version 3 (CCSM3), a modern atmosphere?ocean coupled general circulation model. Specifically, the results of control simulations under both preindustrial and present-day perpetual seasonal cycle conditions are compared to each other and also to the results of five simulations with increasing CO2 concentration scenarios. In the absence of greenhouse gas?induced warming, the meridional overturning circulation (MOC) variability is shown to be dependent on the details of the simulation. In the present-day control simulation, the MOC is characterized by a broad spectrum of low frequencies, whereas, in preindustrial control simulations, MOC variability is characterized either by a well-defined periodicity of 60 yr or by a broad spectrum of low frequencies. In all the control simulations, the MOC appears to respond with a delay of 10 yr to synchronous temperature and salinity anomalies in the deep water formation sites located in the subpolar gyre, but salinity dominates the density anomalies. The explanation of the modeled MOC periodicity is therefore sought in the creation of these density anomalies. The influence of increased sea ice coverage under cold/preindustrial conditions is shown to modify the salinity variability, but it is not a sufficient condition for the support of the MOC periodicity. Instead, its source appears to be a modified subpolar gyre circulation resulting from interaction with the bottom bathymetry, which is able to sustain strong coupling between the horizontal and overturning circulations. Based on the global warming analyses, for the simulations initialized from the cold/preindustrial statistical equilibrium run, the North Atlantic variability continues to be dominated by strong coupling between the horizontal and overturning circulations if the imposed forcing is weak. More generally, the delayed response of the MOC to surface density anomalies in the deep water formation regions is preserved under weak forcing.
    publisherAmerican Meteorological Society
    titleImplications of Both Statistical Equilibrium and Global Warming Simulations with CCSM3. Part II: On the Multidecadal Variability in the North Atlantic Basin
    typeJournal Paper
    journal volume22
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI2775.1
    journal fristpage5298
    journal lastpage5318
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian