YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Synoptic-Scale Wave Breaking on the NAO and Its Connection with the Stratosphere in ERA-40

    Source: Journal of Climate:;2009:;volume( 022 ):;issue: 020::page 5464
    Author:
    Kunz, Torben
    ,
    Fraedrich, Klaus
    ,
    Lunkeit, Frank
    DOI: 10.1175/2009JCLI2750.1
    Publisher: American Meteorological Society
    Abstract: This observational study investigates the impact of North Atlantic synoptic-scale wave breaking on the North Atlantic Oscillation (NAO) and its connection with the stratosphere in winter, as derived from the 40-yr ECMWF Re-Analysis (ERA-40). Anticyclonic (AB) and cyclonic wave breaking (CB) composites are compiled of the temporal and spatial components of the large-scale circulation using a method for the detection of AB and CB events from daily maps of potential vorticity on an isentropic surface. From this analysis a close link between wave breaking, the NAO, and the stratosphere is found: 1) a positive feedback between the occurrence of AB (CB) events and the positive (negative) phase of the NAO is suggested, whereas wave breaking in general without any reference to AB- or CB-like behavior does not affect the NAO, though it preferably emerges from its positive phase. 2) AB strengthens the North Atlantic eddy-driven jet and acts to separate it from the subtropical jet, while CB weakens the eddy-driven jet and tends to merge both jets. 3) AB (CB) events are associated with a stronger (weaker) lower-stratospheric polar vortex, characterized by the 50-hPa northern annular mode. During persistent weak vortex episodes, significantly more frequent CB than AB events are observed concurrently with a significant negative NAO response up to 55 days after the onset of the stratospheric perturbation. Finally, tropospheric wave breaking is related to nonannular stratospheric variability, suggesting an additional sensitivity of wave breaking and, thus, the NAO to specific distortions of the stratospheric polar vortex, rather than solely its strength.
    • Download: (7.407Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Synoptic-Scale Wave Breaking on the NAO and Its Connection with the Stratosphere in ERA-40

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210292
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKunz, Torben
    contributor authorFraedrich, Klaus
    contributor authorLunkeit, Frank
    date accessioned2017-06-09T16:29:04Z
    date available2017-06-09T16:29:04Z
    date copyright2009/10/01
    date issued2009
    identifier issn0894-8755
    identifier otherams-68704.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210292
    description abstractThis observational study investigates the impact of North Atlantic synoptic-scale wave breaking on the North Atlantic Oscillation (NAO) and its connection with the stratosphere in winter, as derived from the 40-yr ECMWF Re-Analysis (ERA-40). Anticyclonic (AB) and cyclonic wave breaking (CB) composites are compiled of the temporal and spatial components of the large-scale circulation using a method for the detection of AB and CB events from daily maps of potential vorticity on an isentropic surface. From this analysis a close link between wave breaking, the NAO, and the stratosphere is found: 1) a positive feedback between the occurrence of AB (CB) events and the positive (negative) phase of the NAO is suggested, whereas wave breaking in general without any reference to AB- or CB-like behavior does not affect the NAO, though it preferably emerges from its positive phase. 2) AB strengthens the North Atlantic eddy-driven jet and acts to separate it from the subtropical jet, while CB weakens the eddy-driven jet and tends to merge both jets. 3) AB (CB) events are associated with a stronger (weaker) lower-stratospheric polar vortex, characterized by the 50-hPa northern annular mode. During persistent weak vortex episodes, significantly more frequent CB than AB events are observed concurrently with a significant negative NAO response up to 55 days after the onset of the stratospheric perturbation. Finally, tropospheric wave breaking is related to nonannular stratospheric variability, suggesting an additional sensitivity of wave breaking and, thus, the NAO to specific distortions of the stratospheric polar vortex, rather than solely its strength.
    publisherAmerican Meteorological Society
    titleImpact of Synoptic-Scale Wave Breaking on the NAO and Its Connection with the Stratosphere in ERA-40
    typeJournal Paper
    journal volume22
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/2009JCLI2750.1
    journal fristpage5464
    journal lastpage5480
    treeJournal of Climate:;2009:;volume( 022 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian