YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 004::page 923
    Author:
    Tulich, Stefan N.
    ,
    Mapes, Brian E.
    DOI: 10.1175/2009JAS3277.1
    Publisher: American Meteorological Society
    Abstract: A three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical robustness of the results and to assess the deterministic nature of the model response for domain sizes near contemporary global model resolution. The response to middle- and upper-tropospheric perturbations is predominantly local in the vertical: convection damps the imposed stimulus over a few hours. Low-level perturbations are similarly damped, but also produce a vertically nonlocal response: enhancement or suppression of new deep convective clouds extending above the perturbed level. Experiments show that the ?effective inhibition layer? for deep convection is about 4 km deep, far deeper than traditional convective inhibition defined for undilute lifted parcels. Both the local and nonlocal responses are remarkably linear but can be highly stochastic, especially if deep convection is only intermittently present (small domains, weak forcing). Quantitatively, temperature-versus-moisture perturbations in a ratio corresponding to adiabatic vertical displacements produce responses of roughly equal magnitude. However, moisture perturbations seem to provoke the nonlocal (upward spreading) type of response more effectively. This nonlocal part of the response is also more effective when background forcing intensity is weak. Only at very high intensity does the response approach the limits of purely local damping and pure determinism that would be most convenient for theory and parameterization.
    • Download: (1.379Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210162
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorTulich, Stefan N.
    contributor authorMapes, Brian E.
    date accessioned2017-06-09T16:28:42Z
    date available2017-06-09T16:28:42Z
    date copyright2010/04/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68588.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210162
    description abstractA three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical robustness of the results and to assess the deterministic nature of the model response for domain sizes near contemporary global model resolution. The response to middle- and upper-tropospheric perturbations is predominantly local in the vertical: convection damps the imposed stimulus over a few hours. Low-level perturbations are similarly damped, but also produce a vertically nonlocal response: enhancement or suppression of new deep convective clouds extending above the perturbed level. Experiments show that the ?effective inhibition layer? for deep convection is about 4 km deep, far deeper than traditional convective inhibition defined for undilute lifted parcels. Both the local and nonlocal responses are remarkably linear but can be highly stochastic, especially if deep convection is only intermittently present (small domains, weak forcing). Quantitatively, temperature-versus-moisture perturbations in a ratio corresponding to adiabatic vertical displacements produce responses of roughly equal magnitude. However, moisture perturbations seem to provoke the nonlocal (upward spreading) type of response more effectively. This nonlocal part of the response is also more effective when background forcing intensity is weak. Only at very high intensity does the response approach the limits of purely local damping and pure determinism that would be most convenient for theory and parameterization.
    publisherAmerican Meteorological Society
    titleTransient Environmental Sensitivities of Explicitly Simulated Tropical Convection
    typeJournal Paper
    journal volume67
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS3277.1
    journal fristpage923
    journal lastpage940
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian