YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    To What Extent Does High-Latitude Wave Forcing Drive Tropical Upwelling in the Brewer–Dobson Circulation?

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 004::page 1232
    Author:
    Ueyama, Rei
    ,
    Wallace, John M.
    DOI: 10.1175/2009JAS3216.1
    Publisher: American Meteorological Society
    Abstract: The causes of the annual cycle and nonseasonal variability in the globally averaged, equator-to-pole Brewer?Dobson circulation (BDC; defined here as the equatorially symmetric component of the Lagrangian-mean meridional circulation) are investigated based on zonally averaged, lower-stratospheric temperature data from satellite-borne Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). Time-varying vertical velocities in the BDC are inferred from departures of the meridional temperature profiles from the respective radiative equilibrium temperature profiles. Equatorward of ?45°N/S, the annual-mean profile of lower-stratospheric temperature and the seasonal and nonseasonal variations about it project almost exclusively onto the equatorially symmetric component. The climatological-mean annual cycle accounts for nearly 90% of the month-to-month variance of the equatorially symmetric component of the temperature field; January/February is colder than July/August equatorward of ?45°N/S and warmer than July/August poleward of that latitude. The equator-to-subpolar temperature contrast roughly doubles from July/August to January/February, implying an approximate doubling of the strength of the BDC. The nonseasonal variability is dominated by a similar pattern. Tropical upwelling in the BDC, as inferred from of the temperature field, varies in response to variations in eddy heat fluxes at high latitudes with comparable strength on the intraseasonal and interannual time scales; it does not appear to be correlated with equatorial tropospheric planetary wave activity or with variations in wave forcing in subtropical lower stratosphere. It is concluded that high-latitude wave forcing plays an important role in modulating tropical upwelling in the BDC across a wide range of frequencies.
    • Download: (1.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      To What Extent Does High-Latitude Wave Forcing Drive Tropical Upwelling in the Brewer–Dobson Circulation?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210137
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorUeyama, Rei
    contributor authorWallace, John M.
    date accessioned2017-06-09T16:28:37Z
    date available2017-06-09T16:28:37Z
    date copyright2010/04/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68565.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210137
    description abstractThe causes of the annual cycle and nonseasonal variability in the globally averaged, equator-to-pole Brewer?Dobson circulation (BDC; defined here as the equatorially symmetric component of the Lagrangian-mean meridional circulation) are investigated based on zonally averaged, lower-stratospheric temperature data from satellite-borne Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). Time-varying vertical velocities in the BDC are inferred from departures of the meridional temperature profiles from the respective radiative equilibrium temperature profiles. Equatorward of ?45°N/S, the annual-mean profile of lower-stratospheric temperature and the seasonal and nonseasonal variations about it project almost exclusively onto the equatorially symmetric component. The climatological-mean annual cycle accounts for nearly 90% of the month-to-month variance of the equatorially symmetric component of the temperature field; January/February is colder than July/August equatorward of ?45°N/S and warmer than July/August poleward of that latitude. The equator-to-subpolar temperature contrast roughly doubles from July/August to January/February, implying an approximate doubling of the strength of the BDC. The nonseasonal variability is dominated by a similar pattern. Tropical upwelling in the BDC, as inferred from of the temperature field, varies in response to variations in eddy heat fluxes at high latitudes with comparable strength on the intraseasonal and interannual time scales; it does not appear to be correlated with equatorial tropospheric planetary wave activity or with variations in wave forcing in subtropical lower stratosphere. It is concluded that high-latitude wave forcing plays an important role in modulating tropical upwelling in the BDC across a wide range of frequencies.
    publisherAmerican Meteorological Society
    titleTo What Extent Does High-Latitude Wave Forcing Drive Tropical Upwelling in the Brewer–Dobson Circulation?
    typeJournal Paper
    journal volume67
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS3216.1
    journal fristpage1232
    journal lastpage1246
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian