YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Eddy-Induced Instability for Low-Frequency Variability

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 006::page 1947
    Author:
    Jin, F-F.
    DOI: 10.1175/2009JAS3185.1
    Publisher: American Meteorological Society
    Abstract: Synoptic eddy?mean flow interaction has been recognized as one of the key sources for extratropical low-frequency variability. In this paper, the underlying dynamics of this interaction are examined from the perspective of a synoptic eddy-induced dynamic instability. To delineate this instability, a barotropic model is used that is linearized with respect to a stochastic basic flow prescribed with both climatologic-mean flow and synoptic eddy statistics. This linear model captures the dynamics of feedback between synoptic eddy and low-frequency flow through a dynamic closure that relates the anomalous eddy vorticity forcing to low-frequency flow anomalies. After reducing this dynamic closure to its fundamental components, this stability is elucidated with analytical results under the most idealized consideration of basic flow. It is shown that through systematic alteration of the synoptic eddy structures in the basic flow, a low-frequency planetary-scale perturbation generates anomalous eddy vorticity forcing positively proportional to the vorticity of the perturbation. Such a perturbation amplifies itself; the energy source for its growth comes from the reservoir residing in the basic synoptic eddy activity. Thus, the growth rate of the synoptic eddy-induced dynamic instability depends primarily on the kinetic energy level of the basic synoptic eddy activity. Moreover, this instability is scale selective with preference for zonal symmetric and asymmetric planetary-scale modes, whose meridional and zonal scales are roughly in the range of those of the observed leading low-frequency patterns. Analysis of this synoptic eddy-induced instability provides insight into the origin of extratropical low-frequency variability.
    • Download: (1.456Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Eddy-Induced Instability for Low-Frequency Variability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210120
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorJin, F-F.
    date accessioned2017-06-09T16:28:34Z
    date available2017-06-09T16:28:34Z
    date copyright2010/06/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68550.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210120
    description abstractSynoptic eddy?mean flow interaction has been recognized as one of the key sources for extratropical low-frequency variability. In this paper, the underlying dynamics of this interaction are examined from the perspective of a synoptic eddy-induced dynamic instability. To delineate this instability, a barotropic model is used that is linearized with respect to a stochastic basic flow prescribed with both climatologic-mean flow and synoptic eddy statistics. This linear model captures the dynamics of feedback between synoptic eddy and low-frequency flow through a dynamic closure that relates the anomalous eddy vorticity forcing to low-frequency flow anomalies. After reducing this dynamic closure to its fundamental components, this stability is elucidated with analytical results under the most idealized consideration of basic flow. It is shown that through systematic alteration of the synoptic eddy structures in the basic flow, a low-frequency planetary-scale perturbation generates anomalous eddy vorticity forcing positively proportional to the vorticity of the perturbation. Such a perturbation amplifies itself; the energy source for its growth comes from the reservoir residing in the basic synoptic eddy activity. Thus, the growth rate of the synoptic eddy-induced dynamic instability depends primarily on the kinetic energy level of the basic synoptic eddy activity. Moreover, this instability is scale selective with preference for zonal symmetric and asymmetric planetary-scale modes, whose meridional and zonal scales are roughly in the range of those of the observed leading low-frequency patterns. Analysis of this synoptic eddy-induced instability provides insight into the origin of extratropical low-frequency variability.
    publisherAmerican Meteorological Society
    titleEddy-Induced Instability for Low-Frequency Variability
    typeJournal Paper
    journal volume67
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS3185.1
    journal fristpage1947
    journal lastpage1964
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 067 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian