YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 012::page 3621
    Author:
    Zhang, Chidong
    ,
    Hagos, Samson M.
    DOI: 10.1175/2009JAS3089.1
    Publisher: American Meteorological Society
    Abstract: Tropical diabatic heating profiles estimated using sounding data from eight field campaigns were diagnosed to document their common and prevailing structure and variability that are relevant to the large-scale circulation. The first two modes of a rotated empirical orthogonal function analysis?one deep, one shallow?explain 85% of the total variance of all data combined. These two modes were used to describe the heating evolution, which led to three composited heating profiles that are considered as prevailing large-scale heating structures. They are, respectively, shallow, bottom heavy (peak near 700 hPa); deep, middle heavy (peak near 400 hPa); and stratiform-like, top heavy (heating peak near 400 hPa and cooling peak near 700 hPa). The amplitudes and occurrence frequencies of the shallow, bottom-heavy heating profiles are comparable to those of the stratiform-like, top-heavy ones. The sequence of the most probable heating evolution is deep tropospheric cooling to bottom-heavy heating, to middle heavy heating, to stratiform-like heating, then back to deep tropospheric cooling. This heating transition appears to occur on different time scales. Each of the prevailing heating structures is interpreted as being composed of particular fractional populations of various types of precipitating cloud systems, which are viewed as the building blocks for the mean. A linear balanced model forced by the three prevailing heating profiles produces rich vertical structures in the circulation with multiple overturning cells, whose corresponding moisture convergence and surface wind fields are very sensitive to the heating structures.
    • Download: (2.265Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210057
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorZhang, Chidong
    contributor authorHagos, Samson M.
    date accessioned2017-06-09T16:28:21Z
    date available2017-06-09T16:28:21Z
    date copyright2009/12/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68493.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210057
    description abstractTropical diabatic heating profiles estimated using sounding data from eight field campaigns were diagnosed to document their common and prevailing structure and variability that are relevant to the large-scale circulation. The first two modes of a rotated empirical orthogonal function analysis?one deep, one shallow?explain 85% of the total variance of all data combined. These two modes were used to describe the heating evolution, which led to three composited heating profiles that are considered as prevailing large-scale heating structures. They are, respectively, shallow, bottom heavy (peak near 700 hPa); deep, middle heavy (peak near 400 hPa); and stratiform-like, top heavy (heating peak near 400 hPa and cooling peak near 700 hPa). The amplitudes and occurrence frequencies of the shallow, bottom-heavy heating profiles are comparable to those of the stratiform-like, top-heavy ones. The sequence of the most probable heating evolution is deep tropospheric cooling to bottom-heavy heating, to middle heavy heating, to stratiform-like heating, then back to deep tropospheric cooling. This heating transition appears to occur on different time scales. Each of the prevailing heating structures is interpreted as being composed of particular fractional populations of various types of precipitating cloud systems, which are viewed as the building blocks for the mean. A linear balanced model forced by the three prevailing heating profiles produces rich vertical structures in the circulation with multiple overturning cells, whose corresponding moisture convergence and surface wind fields are very sensitive to the heating structures.
    publisherAmerican Meteorological Society
    titleBi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics
    typeJournal Paper
    journal volume66
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS3089.1
    journal fristpage3621
    journal lastpage3640
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian