YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Analytic Scaling Law for the Depositional Growth of Snow in Thin Mixed-Phase Layer Clouds

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 009::page 2620
    Author:
    Larson, Vincent E.
    ,
    Smith, Adam J.
    DOI: 10.1175/2009JAS3021.1
    Publisher: American Meteorological Society
    Abstract: In various practical problems, such as assessing the threat of aircraft icing or calculating radiative transfer, it is important to know whether mixed-phase clouds contain significant liquid water content. Some mixed-phase clouds remain predominantly liquid for an extended time, whereas others glaciate quickly. The glaciation rate of mixed-phase layer clouds is thought to depend on various factors, including number concentration of snow crystals, terminal velocity of snow crystals, and crystal habit type. This paper attempts to quantify some of these factors by deriving scaling laws (i.e., power laws) for the mixing ratio and sedimentation flux of snow at cloud base. The scaling laws are derived from the governing equation for snow mixing ratio. They neglect aggregation of snow crystals and accretion of supercooled liquid by snow crystals. The scaling laws permit arbitrary exponents and prefactors of the mass?diameter and fall speed?diameter power laws, allowing flexibility in crystal habit properties. The scaling laws are tested using idealized large-eddy simulation (LES) of three thin, midlevel layer clouds. The scaling laws agree adequately with the LES over one order of magnitude for snow flux and over two orders of magnitude for snow mixing ratio. They indicate, for instance, that in the present LES, cloud-base snow flux and snow mixing ratio increase faster than linearly with increasing cloud thickness and supersaturation with respect to ice. By varying the exponents and prefactors of the scaling laws, one may explore the sensitivity of glaciation rate to habit type. The relationship is complex, but, for the cloud cases examined, dendrites tend to glaciate cloud more rapidly than plates.
    • Download: (1.220Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Analytic Scaling Law for the Depositional Growth of Snow in Thin Mixed-Phase Layer Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4210015
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLarson, Vincent E.
    contributor authorSmith, Adam J.
    date accessioned2017-06-09T16:28:15Z
    date available2017-06-09T16:28:15Z
    date copyright2009/09/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68455.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4210015
    description abstractIn various practical problems, such as assessing the threat of aircraft icing or calculating radiative transfer, it is important to know whether mixed-phase clouds contain significant liquid water content. Some mixed-phase clouds remain predominantly liquid for an extended time, whereas others glaciate quickly. The glaciation rate of mixed-phase layer clouds is thought to depend on various factors, including number concentration of snow crystals, terminal velocity of snow crystals, and crystal habit type. This paper attempts to quantify some of these factors by deriving scaling laws (i.e., power laws) for the mixing ratio and sedimentation flux of snow at cloud base. The scaling laws are derived from the governing equation for snow mixing ratio. They neglect aggregation of snow crystals and accretion of supercooled liquid by snow crystals. The scaling laws permit arbitrary exponents and prefactors of the mass?diameter and fall speed?diameter power laws, allowing flexibility in crystal habit properties. The scaling laws are tested using idealized large-eddy simulation (LES) of three thin, midlevel layer clouds. The scaling laws agree adequately with the LES over one order of magnitude for snow flux and over two orders of magnitude for snow mixing ratio. They indicate, for instance, that in the present LES, cloud-base snow flux and snow mixing ratio increase faster than linearly with increasing cloud thickness and supersaturation with respect to ice. By varying the exponents and prefactors of the scaling laws, one may explore the sensitivity of glaciation rate to habit type. The relationship is complex, but, for the cloud cases examined, dendrites tend to glaciate cloud more rapidly than plates.
    publisherAmerican Meteorological Society
    titleAn Analytic Scaling Law for the Depositional Growth of Snow in Thin Mixed-Phase Layer Clouds
    typeJournal Paper
    journal volume66
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS3021.1
    journal fristpage2620
    journal lastpage2639
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian