YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Outflow Environment on Tropical Cyclone Intensification and Structure

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 068 ):;issue: 002::page 177
    Author:
    Rappin, Eric D.
    ,
    Morgan, Michael C.
    ,
    Tripoli, Gregory J.
    DOI: 10.1175/2009JAS2970.1
    Publisher: American Meteorological Society
    Abstract: In this study, the impacts of regions of weak inertial stability on tropical cyclone intensification and peak strength are examined. It is demonstrated that weak inertial stability in the outflow layer minimizes an energy sink of the tropical cyclone secondary circulation and leads to more rapid intensification to the maximum potential intensity. Using a full-physics, three-dimensional numerical weather prediction model, a symmetric distribution of environmental inertial stability is generated using a variable Coriolis parameter. It is found that the lower the value of the Coriolis parameter, the more rapid the strengthening. The lower-latitude simulation is shown to have a significantly stronger secondary circulation with intense divergent outflow against a comparatively weak environmental resistance. However, the impacts of differences in the gradient wind balance between the different latitudes on the core structure cannot be neglected. A second study is then conducted using an asymmetric inertial stability distribution generated by the presence of a jet stream to the north of the tropical cyclone. The initial intensification is similar, or even perhaps slower, in the presence of the jet as a result of increased vertical wind shear. As the system evolves, convective outflow from the tropical cyclone modifies the jet resulting in weaker shear and more rapid intensification of the tropical cyclone?jet couplet. It is argued that the generation of an outflow channel as the tropical cyclone outflow expands into the region of weak inertial stability on the anticyclonic shear side of the jet stream minimizes the energy expenditure of forced subsidence by ventilating all outflow in one long narrow path, allowing radiational cooling to lessen the work of subsidence. Furthermore, it is hypothesized that evolving conditions in the outflow layer modulate the tropical cyclone core structure in such a way that tropical cyclone outflow can access weak inertial stability in the environment.
    • Download: (3.554Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Outflow Environment on Tropical Cyclone Intensification and Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209990
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRappin, Eric D.
    contributor authorMorgan, Michael C.
    contributor authorTripoli, Gregory J.
    date accessioned2017-06-09T16:28:11Z
    date available2017-06-09T16:28:11Z
    date copyright2011/02/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68432.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209990
    description abstractIn this study, the impacts of regions of weak inertial stability on tropical cyclone intensification and peak strength are examined. It is demonstrated that weak inertial stability in the outflow layer minimizes an energy sink of the tropical cyclone secondary circulation and leads to more rapid intensification to the maximum potential intensity. Using a full-physics, three-dimensional numerical weather prediction model, a symmetric distribution of environmental inertial stability is generated using a variable Coriolis parameter. It is found that the lower the value of the Coriolis parameter, the more rapid the strengthening. The lower-latitude simulation is shown to have a significantly stronger secondary circulation with intense divergent outflow against a comparatively weak environmental resistance. However, the impacts of differences in the gradient wind balance between the different latitudes on the core structure cannot be neglected. A second study is then conducted using an asymmetric inertial stability distribution generated by the presence of a jet stream to the north of the tropical cyclone. The initial intensification is similar, or even perhaps slower, in the presence of the jet as a result of increased vertical wind shear. As the system evolves, convective outflow from the tropical cyclone modifies the jet resulting in weaker shear and more rapid intensification of the tropical cyclone?jet couplet. It is argued that the generation of an outflow channel as the tropical cyclone outflow expands into the region of weak inertial stability on the anticyclonic shear side of the jet stream minimizes the energy expenditure of forced subsidence by ventilating all outflow in one long narrow path, allowing radiational cooling to lessen the work of subsidence. Furthermore, it is hypothesized that evolving conditions in the outflow layer modulate the tropical cyclone core structure in such a way that tropical cyclone outflow can access weak inertial stability in the environment.
    publisherAmerican Meteorological Society
    titleThe Impact of Outflow Environment on Tropical Cyclone Intensification and Structure
    typeJournal Paper
    journal volume68
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS2970.1
    journal fristpage177
    journal lastpage194
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 068 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian