YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Transition to Strong Convection

    Source: Journal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 008::page 2367
    Author:
    Neelin, J. David
    ,
    Peters, Ole
    ,
    Hales, Katrina
    DOI: 10.1175/2009JAS2962.1
    Publisher: American Meteorological Society
    Abstract: Recent work has shown that observations of tropical precipitation conform to properties associated with critical phenomena in other systems. Here some of these universal properties are used to probe the physics of tropical convection empirically, providing potential tests for models and parameterizations. The power-law pickup of ensemble average precipitation as a function of column water vapor w occurs above a critical value wc whose temperature dependence is determined for layer-integrated tropospheric temperature or saturation value. This dependence differs from the simplest expectations based on column saturation. Rescaling w by wc permits a collapse of precipitation-related statistics to similar functional dependence for all temperatures. The sharp precipitation variance peak at wc, obtained without detailed vertical structure information, appears consistent with arguments that onset requires a deep moist layer. Sea surface temperature (SST) is found not to have a significant effect on the precipitation pickup. The effect of SST on the climatological precipitation occurs via the frequency of occurrence of w values as the system spends a larger fraction of time near criticality over regions of warm SST. Near and above criticality, where most precipitation occurs, the w distribution is highly constrained by the interaction with convection, with a characteristic sharp drop at criticality. For precipitating points, the distribution has a Gaussian core with an approximately exponential tail akin to forced advection?diffusion problems. The long tail above wc, implying relatively frequent strong events, remains similar through the range of tropospheric temperature and SST spanning tropical large-scale conditions. A simple empirical closure illustrates time decay properties.
    • Download: (1.656Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Transition to Strong Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4209983
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorNeelin, J. David
    contributor authorPeters, Ole
    contributor authorHales, Katrina
    date accessioned2017-06-09T16:28:10Z
    date available2017-06-09T16:28:10Z
    date copyright2009/08/01
    date issued2009
    identifier issn0022-4928
    identifier otherams-68426.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4209983
    description abstractRecent work has shown that observations of tropical precipitation conform to properties associated with critical phenomena in other systems. Here some of these universal properties are used to probe the physics of tropical convection empirically, providing potential tests for models and parameterizations. The power-law pickup of ensemble average precipitation as a function of column water vapor w occurs above a critical value wc whose temperature dependence is determined for layer-integrated tropospheric temperature or saturation value. This dependence differs from the simplest expectations based on column saturation. Rescaling w by wc permits a collapse of precipitation-related statistics to similar functional dependence for all temperatures. The sharp precipitation variance peak at wc, obtained without detailed vertical structure information, appears consistent with arguments that onset requires a deep moist layer. Sea surface temperature (SST) is found not to have a significant effect on the precipitation pickup. The effect of SST on the climatological precipitation occurs via the frequency of occurrence of w values as the system spends a larger fraction of time near criticality over regions of warm SST. Near and above criticality, where most precipitation occurs, the w distribution is highly constrained by the interaction with convection, with a characteristic sharp drop at criticality. For precipitating points, the distribution has a Gaussian core with an approximately exponential tail akin to forced advection?diffusion problems. The long tail above wc, implying relatively frequent strong events, remains similar through the range of tropospheric temperature and SST spanning tropical large-scale conditions. A simple empirical closure illustrates time decay properties.
    publisherAmerican Meteorological Society
    titleThe Transition to Strong Convection
    typeJournal Paper
    journal volume66
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2009JAS2962.1
    journal fristpage2367
    journal lastpage2384
    treeJournal of the Atmospheric Sciences:;2009:;Volume( 066 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian